
rDai.md 2024-02-29

1 / 23

@Johannes Kepler University (JKU), Linz: Motivated mainly by the apparent connection between AI
technologies and approaches like modeling and NLP/LLM (Natural Language Processing/Large Language
Models) and my discipline, ECM.

academic blog post overview

Reinforcement Learning Goes Deep

Part I Coming soon.

Attention via LSTM, the Transformer-Connection

Coming soon.

LSTM in the Linz-AI-Curriculum

Includes some WL (Wolfram Language). Let's always include some WL.

Presentation: Language Models are Few-Shot Learners

Seminar-presentation/Thesis I. Next up a practical component and the thesis itself.

Some housekeeping notes on my degree, and shorter tool-oriented posts about Wolfram Language, Prolog (!),
and SMT2 for model checking and for planning are also here, whereas further Wolfram Language work is
documented as part of my engagement at Wolfram Research.

rX Feed (really, notes on how to apply this stuff) and my formal thesis in its different parts, interlaced with
these blog posts, become part of the same project, I find: I hope you have fun reading! All credit for the
techniques presented goes to the authors. All errors in their presentation are mine. I am happy for you
to get in touch for any comments, suggestions and any notes you have for me about the material.

These Masters level studies are on-going (target December 2024), now full-time, and occurring in the context of
the Symbolic/Mathematical Track @JKU's AI Masters in AI. The most up-to-date curriculum is listed in English
and I also wrote a concept document for a potential Symbolic Computation direction of these studies post-
Masters here in Linz, where however LLMs and are taking center-stage for now, as my Masters contribution to
the Zeitgeist.

Reinforcement Learning Goes Deep (Part I)
Repository on GitHub: for this Part I to a look at Deep Learning for Reinforcement Learning (RL), i.e. Deep
Reinforcement Learning, I want to review some RL basics, largely following the well-tested Sutton and Barto text,
ending on a note about planning vs learning and a focus on the foundational Bellman equation.

Test Project: Environment, Policy, and the OpenAI Gym

Q-learning as a Learning Algorithm

Planning vs Learning

file:///wolfram
file:///notes
mailto:jack.heseltine@gmail.com
https://studienhandbuch.jku.at/curr/933
file:///assets/pdf/AI-SE-Symbolic-Computation-Concept.pdf
https://github.com/heseltime/reinforcement-learning-ubern
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

rDai.md 2024-02-29

2 / 23

The Bellman Equation

LSTM in the Linz-AI-Curriculum
It's a core course for the Master's, treating a core AI datastructure so to speak, maybe as central as
Convolutional Neural Networks, and at least framing the perspective on Transformers (where there is no
separate course). After all, JKU's Sepp Hochreiter invented LSTM (Long-Short-Term Memory), but to go there,
you need to start from RNNs (Recurrent Neural Networks) first.

This chain-like nature reveals that recurrent neural networks are intimately related to sequences and
lists. They’re the natural architecture of neural network to use for such data.

(Chris Olah, "Understanding LSTM Networks" posted on August 27, 2015 and accessed Febrary 17, 2024)

RNN-Feats? Read The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy, maybe
not so unreasonable in light of the quote from Chris Olah.

Quick Test: Wolfram Language LSTM Handling
Let's try something to begin, though, before jumping into more background on RNNs generally, and LSTM
specifically, right up to the 2024 xLSTM Story (DE-world currently).

I know Python is the default in many AI curricula nowadays, but tools like Wolfram Language (WL) can be
more effective because they are more high level. It really depends on what you want to emphasize: are you
interested in implementation details, or do you just want to work with the networks?

Let's try this Input:

(*recurrent layer acting on variable-length sequences of 2-vectors*)
lstm = NetInitialize@
 LongShortTermMemoryLayer[2, "Input" -> {"Varying", 2}]
(*Evaluate the layer on a batch of variable-length sequencesEvaluate the layer on
a batch of variable-length sequences*)
seq1 = \{\{0.1, 0.4\}, \{-0.2, 0.7\}\};
seq2 = \{\{0.2, -0.3\}, \{0.1, 0.8\}, \{-1.3, -0.6\}\};
result = lstm[{seq1, seq2}]

Output:

\{\{\{-0.0620258, 0.0420743\}, \{-0.0738596,
 0.0826808\}\}, \{\{0.0240281, -0.00213933\}, \{-0.0691157,
 0.0852326\}, \{0.190297, -0.117645\}\}\}

For something just a bit more complicated, let's produce a number for each sequence: this is what it would
look like to chain up the layers in WL.

Input:

https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://www.bioinf.jku.at/publications/older/2604.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.heise.de/news/NXAI-Sepp-Hochreiter-will-europaeische-Antwort-auf-OpenAI-erschaffen-9618232.html

rDai.md 2024-02-29

3 / 23

net = NetInitialize@
 NetChain[{EmbeddingLayer[3], LongShortTermMemoryLayer[1],
 SequenceLastLayer[]}, "Input" -> NetEncoder["Characters"]]

Output after the jump, in a repo I made for the demo notebook. If you don't want to download the notebook
and boot up Mathematica, the output looks like this, however.

What follows is a small taxonomy of RNNs, centering on LSTM, with the formulas!

RNN Architectures

Jordan

For the Jordan network, which is a type of recurrent neural network (RNN) that connects the output to the
input of the network for the next time step, the equations are slightly different from those of LSTM-like
networks we will look at in a moment.

$$ \begin{align} \boldsymbol{h}(t) &= \sigma\left(\boldsymbol{W}{h}^{\top} \boldsymbol{x}(t) +
\boldsymbol{R}{h}^{\top} \boldsymbol{y}(t-1)\right) \ \boldsymbol{y}(t) &=
\phi\left(\boldsymbol{W}_{y}^{\top} \boldsymbol{h}(t)\right) \end{align} $$

The point here is: weight sharing is emplyoed, that is, the same weights are used across time steps. R is the
Recurrent Weight Matrix here.

Elman

The "simple recurrent neural network" as you sometimes see it called: Internal hidden activations are
remembered, but hidden units loop only to themselves, not neighbors or any other units:

https://github.com/heseltime/WLForRNNs/blob/main/lstm-tests.nb

rDai.md 2024-02-29

4 / 23

$$ \begin{align} \boldsymbol{h}(t) &= \sigma\left(\boldsymbol{W}_{h}^{\top} \boldsymbol{x}(t) +
\boldsymbol{a}(t-1)\right) \ \boldsymbol{y}(t) &= \phi\left(\boldsymbol{V}^{\top} \boldsymbol{a}(t)\right)
\end{align} $$

Fully Recurrent Network

Do you spot what is moving in the formulas, as complexity and thereby expressivity is added?

$$ \begin{align} \boldsymbol{h}(t) &= \sigma\left(\boldsymbol{W}^{\top} \boldsymbol{x}(t) +
\boldsymbol{R}^{\top} \boldsymbol{h}(t-1)\right) \ \boldsymbol{y}(t) &= \phi\left(\boldsymbol{V}^{\top}
\boldsymbol{h}(t)\right) \end{align} $$

We arrive at the Fully RNN with recurrent hidden layers that are fully connected, so all the hidden units are
able to store information, i.e. from previous inputs. There is a time lag to these connections, therefore.

Autoregressive-Moving-Average (ARMA), Non-linear Autoregressive Exogenous Models
(NARX) and Time-Delay Neural Networks

Let's discuss the ideas on a high level.

The Autoregressive Moving Average (ARMA) model is a popular statistical model used for time series
forecasting. It combines two components: Autoregressive (AR) and Moving Average (MA). The AR part
involves using the dependency between an observation and a number of lagged observations. The MA part
involves modeling the error term as a linear combination of error terms occurring contemporaneously and at
various times in the past.

The ARMA model can be denoted as ARMA(p, q), where $$p$$ is the order of the autoregressive part, and
$$q$$ is the order of the moving average part. The general form of the ARMA model is given by the following
equation:

$$ X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + \theta_1 \varepsilon_{t-1} + \theta_2
\varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q} + \varepsilon_t $$

Where:

$$X_t$$ is the time series at time $$t$$,
$$\phi_1, \phi_2, \ldots, \phi_p$$ are the coefficients of the autoregressive terms,
$$\theta_1, \theta_2, \ldots, \theta_q$$ are the coefficients of the moving average terms,
$$\varepsilon_t$$ is white noise at time $$t$$.

The Nonlinear AutoRegressive with eXogenous inputs (NARX) model is a type of recurrent dynamic network
that is particularly useful for modeling and predicting time series data influenced by past values of the target
series and past values of external (exogenous) inputs. It is a powerful tool for capturing complex nonlinear
relationships in time series data.

The Nonlinear AutoRegressive with eXogenous inputs (NARX) model can be represented as follows:

$$ y(t) = f\left(y(t-1), y(t-2), \ldots, y(t-d_y), u(t-1), u(t-2), \ldots, u(t-d_u)\right) + \varepsilon(t) $$

Where:

$$y(t)$$ is the output at time $$t$$,

rDai.md 2024-02-29

5 / 23

$$u(t)$$ is the exogenous input at time $$t$$,
$$d_y$$ and $$d_u$$ are the delays (or memory) for the output and input respectively,
$$f$$ represents a nonlinear function, often realized by a neural network,
$$\varepsilon(t)$$ is the error term at time $$t$$.

Finally, Time Delay Neural Networks (TDNNs) are a specialized form of neural networks designed to recognize
patterns across sequential data, effectively capturing temporal relationships. TDNNs introduce a mechanism
to handle time series or sequence data by incorporating time-delayed connections in their architecture. This
allows the network to consider input not just from the current time step but also from several previous time
steps, thus leveraging the temporal context of the data.

The operation of a neuron in a TDNN can be mathematically represented as follows:

$$ y(t) = f\left(\sum_{i=0}^{N} w_i x(t-i) + b \right) $$

where:

$$y(t)$$ is the output of the neuron at time $$t$$,
$$x(t-i)$$ represents the input at time $$t-i$$,
$$w_i$$ are the weights associated with inputs at different time delays,
$$b$$ is the bias term,
$$f$$ is the activation function,
$$N$$ is the number of time steps considered (the window size).

So much for further background on the architectural levels. Let's let the latter models especially serve as
contextual notes, the goal always being to express connections across time steps. So far so good!

Learning and the Vanishing Gradient Problem

Backpropagation Through Time (BPTT)

How BPTT Works:

1. Unfolding the Network: The RNN is "unrolled" for each time step in the input sequence, transforming
it into an equivalent feedforward network where each layer corresponds to a time step.

2. Forward Pass: Inputs are fed sequentially, and activations are computed across the unrolled network,
moving forward through time.

3. Backward Pass: The loss is calculated at the final output, and gradients are backpropagated through
the network, taking into account the impact of weights across all time steps.

4. Gradient Accumulation: Gradients for each time step are accumulated since the same weights are
applied at every step.

5. Weight Update: The weights are updated using the accumulated gradients, employing optimization
algorithms like SGD, Adam, or RMSprop.

Challenges with BPTT:

rDai.md 2024-02-29

6 / 23

- Vanishing and Exploding Gradients: These issues can significantly hinder learning, especially for long
sequences. LSTM and GRU units are designed to mitigate these problems.

- Computational Intensity: Processing long sequences in their entirety for each update can be
computationally demanding and memory-intensive.

- Truncated BPTT: This approach limits the unrolled network to a fixed number of steps to reduce
computational requirements, though it may restrict the model's ability to learn from longer sequences.

BPTT enables RNNs to effectively leverage sequence data, making it crucial for applications in fields like
natural language processing and time series analysis. We will pass by some important initialization,
regularization, and other approaches and methods for the purposes of this summary post.

The Formulas

I'll refer to Dive Into Deep Learning's section on this topic.

Truncated BPTT

Dive Into Deep Learning (ibid) has the idea:

... an approximation of the true gradient, simply by terminating the sum at $$\partial h_{t-\tau}/\partial
w_\textrm{h}$$. In practice this works quite well. It is what is commonly referred to as truncated
backpropgation through time (Jaeger, 2002).

Here is a reference tutorial paper I really like by Herbert Jaeger, covering the method in some more detail and
also presenting the material covered in this post from different angles.

Real-time Recurrent Learning (RTRL)

RTRL is an online learning algorithm, which means it updates the weights of the neural network in real-time as
each input is processed, rather than waiting for a full pass through the dataset (as in batch learning). This
characteristic makes RTRL suitable for applications where the model needs to adapt continuously to incoming
data, such as in control systems, real-time prediction tasks, or any scenario where the data is streaming or too
large to process in batches.

The key feature of RTRL is its ability to compute the gradient of the loss function with respect to the weights
of the network at each time step, using the information available up to that point. This is achieved by
maintaining a full Jacobian matrix that tracks how the output of each unit in the network affects each other
unit. However, this comes with a significant computational cost because the size of the Jacobian matrix grows
quadratically with the number of units in the network, making RTRL computationally expensive for large
networks.

Despite its computational demands, RTRL has been foundational in the development of algorithms for
training RNNs, and it has inspired the creation of more efficient algorithms that approximate its computations
in a more computationally feasible manner, such as Backpropagation Through Time (BPTT) and its various
optimized forms.

RTRL is particularly valued in scenarios where it's crucial to update the model weights as new data arrives,
without the luxury of processing the data in large batches. However, due to its computational cost, practical

https://d2l.ai/chapter_recurrent-neural-networks/bptt.html
https://www.ai.rug.nl/minds/uploads/ESNTutorialRev.pdf

rDai.md 2024-02-29

7 / 23

applications often use alternative methods that strike a balance between real-time updating and
computational feasibility.

Summary of the asymptotic complexities

- BPTT (Backpropagation Through Time) - Asymptotic Complexity: O(T * C) where T is the length of the
input sequence and C represents the complexity of computing the gradients at a single timestep (including
both forward and backward passes). The complexity scales linearly with the length of the input sequence but
requires significant memory for long sequences.

- RTRL (Real-Time Recurrent Learning) - Asymptotic Complexity: O(n^4) for a network with n units. This
high computational complexity arises from the need to update a full Jacobian matrix tracking the
dependencies of all units on each other at every timestep. It makes RTRL impractical for large networks
despite its real-time learning capability.

- TBPTT (Truncated Backpropagation Through Time) - Asymptotic Complexity: O(k * C) where k is the
truncation length (the number of timesteps for which the network is unfolded) and C is similar to that in BPTT.
TBPTT provides a more manageable and predictable computational cost, especially for long sequences,
offering a practical compromise between computational efficiency and the benefits of temporal learning.

LSTM Solves the Vanishing Gradient Problem

Vanilla LSTM

Let's dive into the formulas following the architectures approach from before.

$$ \begin{align} \boldsymbol{i}(t) &= \sigma\left(\boldsymbol{W}{i}^{\top} \boldsymbol{x}(t)+\boldsymbol{R}
{i}^{\top} \boldsymbol{y}(t-1)\right) \ \boldsymbol{o}(t) &= \sigma\left(\boldsymbol{W}{o}^{\top}
\boldsymbol{x}(t)+\boldsymbol{R}{o}^{\top} \boldsymbol{y}(t-1)\right) \ \boldsymbol{f}(t) &=
\sigma\left(\boldsymbol{W}{f}^{\top} \boldsymbol{x}(t)+\boldsymbol{R}{f}^{\top} \boldsymbol{y}(t-1)\right) \
\boldsymbol{z}(t) &= g\left(\boldsymbol{W}{z}^{\top} \boldsymbol{x}(t)+\boldsymbol{R}{z}^{\top}
\boldsymbol{y}(t-1)\right) \ \boldsymbol{c}(t) &= \boldsymbol{f}(t) \odot \boldsymbol{c}(t-1)+\boldsymbol{i}
(t) \odot \boldsymbol{z}(t) \ \boldsymbol{y}(t) &= \boldsymbol{o}(t) \odot h(\boldsymbol{c}(t)) \end{align} $$

The Vanilla LSTM, distinguished by its three gates and a memory state, is a staple variant in the realm of Long
Short-Term Memory networks. It stands out for its ability to selectively preserve or ignore information, making
it adept at managing memory cells amid potential distractions and noise. This selective filtering results in a
highly non-linear dynamic that equips the LSTM to execute complex functions effectively.

Here's an overview of the Vanilla LSTM's operation, highlighting its components and their respective
functions:

Sensory Inputs (x(t)): Incoming data at each time step, transformed into cell input activations (z(t))
through a non-linear function (g(·)), typically the hyperbolic tangent (tanh).
Input Gate (i(t)): Utilizes a sigmoid function to filter (z(t)), allowing only relevant information to
pass through based on the current context.
Forget Gate (f(t)): Also employing a sigmoid function, it determines the proportion of the previous
cell state (c(t−1)) to retain or discard, enabling the cell to forget irrelevant past information.
Cell State Update: The new cell state (c(t)) is formed by an element-wise addition of the product of
the input gate and cell input activations (i(t)⊙z(t)) with the product of the forget gate and the

rDai.md 2024-02-29

8 / 23

previous cell state (f(t)⊙c(t−1)), effectively updating the memory with relevant new information
while discarding the old.
Output Gate (o(t)): The final step involves squashing the memory cell's contents into a numerical
range via a cell activation function (h(·)) and then filtering this through an output gate. This process
yields the final memory cell state activation (y(t)), ready for the next computational step or to serve as
the output.

This structured approach allows the Vanilla LSTM to adeptly navigate through time series data, learning from
long-term dependencies and making it a powerful tool for a wide range of sequential data processing tasks.

Schematic of the Vanilla LSTM Cell

Figure from K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber. IEEE Transactions on Neural
Networks and Learning Systems, Vol 28(10), pp. 2222–2232. Institute of Electrical and Electronics Engineers
(IEEE). 2017.

Focused, Lightweight LSTM and Gated Recurrent Unit (GRU)

Focused LSTM: No forget gate and fewer parameters than Vanilla LSTM.

Lightweight LSTM: The Focused LSTM without output gates. (Has Markov properties*.)

(*The Markov property is a fundamental concept in the theory of stochastic processes. It refers to the
memoryless property of a process, where the future state depends only on the current state and not on the
sequence of events that preceded it. There are several types.)

Gated Recurrent Unit (GRU)

A slightly more dramatic variation on the LSTM is the Gated Recurrent Unit, or GRU, introduced by Cho,
et al. (2014). It combines the forget and input gates into a single “update gate.” It also merges the cell
state and hidden state, and makes some other changes. The resulting model is simpler than standard
LSTM models, and has been growing increasingly popular.

From Chris Olah’s Understanding LSTM Networks: great diagrams there.

"Getting" LSTM

Regardless of architecture, and since a lot has been written to explain LSTMs from the ground up, I would like
to clear up the blocks you might face if you are similar to me, as you try and understand the approach.

The weights $$ W_{{i,o,f,z}} $$ are matrices, for the input data to each of the gates
The recurrent weights $$ R_{{i,o,f,z}} $$ are also just learnable matrices, it really is all very similar to a
regular neural net once you unroll the thing formally
you end up with two pathways through the unit and overall structures, basically one for short-range
and one for long-range dependencies: short-term corresponds to inner states of the cells.
the first stage in the LSTM cell determines what percentage of the long-term memory is remembered
(forget gate)
the part that of the LSTM cell that determines how to update the long-term memory is called the input
gate
opposite this last point, the output gate: updates the short-term memory

https://arxiv.org/pdf/1406.1078v3.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

rDai.md 2024-02-29

9 / 23

separating the paths for long- and short-term memories, LSTMs avoid the vanishing/exploding
gradient problem: that means we can unroll them more times to accommodate longer sequences of
input data

I can really recommend StatQuest if you want a video, but you have to like the StatQuest presentation style
("Bam").

Tricks of the Trade

See Ticker Steps, Negative Gate Biases, Scaled Activation Functions, etc. in The Sorcerer’s Apprentice
Guide to Training LSTMs by Niklas Schmidinger.

LSTM, Transformers, Hybrid xLSTM?
For another day: JKU in the headlines, precisely on topic, but what's the idea? I think this is not yet out of the
bag but will be soon, providing an opportunity for another post here. At the core, this is about LSTM vs
Transfomers however and sounds like something hybrid.

The transformer computations increase quadratically according to the text length. By contrast, xLSTM
calculations increase in a linear manner only, along with the text length, thereby using less processing
power during operation. As complex tasks require more text for both the task description and the
solution, this is a great advantage. Fortunately, xLSTM can, for example, facilitate industrial
applications, especially if transformer models are too slow. Similar to transformer models, xLSTM has a
phonetic memory. The algorithm is, however, equipped with an additional component that results in a
closer resemblance to human verbal working memory, making the xLSTM algorithm much more
powerful.

I am excited to catch wind of the story directly as it unfolds at JKU.

Taking Symbolic on the Road (with Wolfram!)
Apart from my thesis, practical work, final exam and core coursework (see next sections below), my AI degree
in Linz involves the symbolic track components I talk about above, essentially Computer Algebra and
Automated Reasoning, both situated at RISC: since I am now working for Wolfram during my Masters and in
the foreseeable future, I am making an effort to basically pool that work and this part of my studies: the tool
(also used in Linz and at RISC), Wolfram Language, is the same, after all.

The remaining sections in this page deal with all other areas of my degree including other parts of the
Symbolic track in Linz, already completed and outlined towards the end of the page.

How to Wrap a Technical Masters Degree in Austria (at
Johannes Kepler University!)
Now for some Housekeeping.

Thesis Committee Planning

https://www.youtube.com/watch?v=YCzL96nL7j0
https://www.niklasschmidinger.com/posts/2020-09-09-lstm-tricks/
https://www.jku.at/en/news-events/news/detail/news/ai-made-in-europe-spitzenforscher-sepp-hochreiter-und-sein-xlstm-erhalten-unternehmerische-verstaerkung-fuer-europaeisches-large-language-model/
file:///wolfram
file:///c%3A/Public/heseltime/heseltime.github.io/pages/studies-overview
file:///wolfram#computer-algebra
file:///wolfram#automated-reasoning
https://risc.jku.at/

rDai.md 2024-02-29

10 / 23

As my thesis approaches a writing-stage, I start to think about the tetris-like putting together of my thesis
committee, following this guideline (online in full (EN)).

As part of the oral examination, the student will be asked to create a 3-member examination
committee consisting of a committee head (member 1) and two additional members (members 2 and
3). This first committee member may not be a thesis supervisor and will preside over the oral defense.
The second committee member will conduct an examination in the subject area of “Machine Learning
and Perception”. The third committee member will conduct an examination in regard to the selected
elective track. The thesis supervisor should also be a member of the committee. Whereas two
committee members may be from the same institute, all of the committee members should not be
from the same institute.

Is this task AI/Symbolically solvable? A neural network could do it, we can be sure of that.

The ca. one-hour long exam remains for me to do, not the AI, and is about my Master's thesis, with a grade
provided by member 1 in the above. Members 2 and 3 cover the required and elective coursework (according
to a track, Symbolic in my case). Because I have two supervisors and it seems at least one of them (conceivably
both) need to be part of the examination, I see how these slots fill up and decide subject areas in terms of the
examiner for me: my supervisors come from the machine learning and the knowledge processing institutes
respectively, where machine learning constitutes the core, required coursework and knowledge processing is
taken to be part of the symbolic track (where I actually would have liked a cross-over to Wolfram Language
and RISC topics, but cannot cover these in this view - except maybe if there is no need to task all supervisors
to the examination table!) so it looks like this is where I am headed, to exit my degree (in style) eventually.

Mysterious member No 1 remains to be chosen! I wonder if this one might be offered by the Insitute of
Integrated Study, see below details on the thesis' genesis.

Studies Overview (in the 2019 Curriculum View)
But where am I right now in my studies and what is the timelined target?

So the matter is complicated by a slight difference between the 2019 and the current 2021 curriculum (it is
2024 now and there is a delay between the given years and the years studied by: I am studying by the 2021
curriculum, I believe (!), but started by the 2019 curriculum - will need to check the details with the studies
admin) but ok, let's not get weighed down here: by the 2019 curriculum and according to my original idea for
this studies, subject to some slight shifting of coursework according to interest or lack thereof (sorry, looking
at you, Computer vision), here are some nice Wolfram Language word clouds with the credit-weighted course
titles, listed by semester.

Prerequisite Studies

Please don't ask why I do things in complicated ways! During my SE Bachelor's I enrolled in university
coursework from the AI curriculum, both Bachelor's and Master's level, and then formally entered into the
Master's on the basis of my college Bachelor's - requiring some preliminary coursework from the AI
Bachelor's. All while already working after college, which yes, did add a stress factor, so if you are planning a
similar route, probably best to go it more linearly. But sometimes these things just come a certain way: in
addition to the following timeline and work officially credited to the Master's I actually did a lot of Bachelor's
level courses from both the JKU AI and CS (or Informatics, as Austrians like to say) Bachelor's, before at

https://www.jku.at/en/degree-programs/types-of-degree-programs/masters-degree-programs/ma-artificial-intelligence/program-details/
file:///wolfram
file:///rDse
https://www.jku.at/en/degree-programs/types-of-degree-programs/bachelors-and-diploma-degree-programs/ba-artificial-intelligence/
https://www.jku.at/en/degree-programs/types-of-degree-programs/bachelors-and-diploma-degree-programs/ba-computer-science/

rDai.md 2024-02-29

11 / 23

arriving at my model of combining skills-based learning at Hagenberg with semi-direct entry to a science-
oriented Master's.

Pre I (Bachelor's AI content in parallel to SE Bachelor's)

So yes, please don't ask why I do things in complicated ways!

ML (Machine Learning) Supervised Techniques

I already started on some Master's level coursework too here, Model Checking, some Computer Vision
(lecture requirement), Basic Methods of Data Analysis (from the Bachelor's actually), AI in Medicine (short
course at the Medical Faculty in Linz).

Pre II (Bachelor's AI content in parallel to SE Bachelor's)

ML Unsupervised Techniques
Programming in Python II
Math for AI II

Also did Knowledge Representation and Reasoning (formerly Symbolic AI) at the Master's level here.

Semester I/Winter (2023/24)

Curricular ideal (here's a magical German term for you: "Idealtypischer Studienverlauf" ... ideal-typical (?)
course (trajectory) of studies):

Model Checking was already done in Pre I, note on Computer Algebra: replaced by Planning and Reasoning
in AI in the 2021 curriculum. I took the Planning course, see the following word cloud, but still want to try and
integrate Computer Algebra with my Master's as well, if possible: I am already in touch with the studies admin
about this now.

Target (Update March 2024: Reached)

So, the Jack-actual (Computer Vision will be done in Semester III, which I am ok with, so I consider my target
reached):

file:///rDse

rDai.md 2024-02-29

12 / 23

Semester II/Summer (2024 - NOW)

The upcoming semester, let's see if I can follow the ideal.

Target

Actually, I already know I am doing my Practical Work Component this semester, so that already breaks with
the ideal ...

Also Symbolic AI (now called Knowledge Representation and Reasoning) was already completed in Pre II: so,
in other words, shooting beyond ideal here, for my target.

Semester III (Target Final Semester)/Winter (2024/2025)

Once again an ideal:

Target

This might be a lofty goal ... I already completed Practical Work and Seminar at this point, and need to wrap
my Master's thesis (pulling from the intended Semester IV), but still need to do the Computer Vision

rDai.md 2024-02-29

13 / 23

component (technically only the exercise, the lecture was done in Pre I actually) on the other hand, so:

Automated Reasoning is listed for this semster (2019 version), and is only offered this semester currently,
along with Computer Algebra (but this one is not required in the 2021 curriculum anymore, just a nice course).

Shadow Semester IV (Summer 2025, Overflow/Bridging Semester)

Basically only if needed for anything else than the following curricular ideal, where I already completed
everything if I stay on target (then I would be doing my exam, see above, in the spring, which could be a nice
timeline too): this would be a whole semester reserved for Masters Thesis (writing), Seminar and Exam. We'll
see.

Target

On-target would be only the final Master's exam open in the spring, to conclude with this course of studies in
all but this last practical matter, maybe allowing for time for some interesting (extra-credit) courses, certainly
making for a helpful financial support setup in a country where good studies progress is actually monetarily
rewarded by public scholarship schemes - on a monthly basis for every month in studies, see. Ask me about it
if you are interested in that topic, by the way!

Free Elective List

12 credits to fill according to both curriculum versions below, CAN be taken from the AI Masters prerequisite
Bachelor's level coursework too. (See Pre I and II above.)

ML supervised (4.5 credits)
ML unsupervised (4.5 credits)
Programming in Python II (3 credits)

Area of Specialization (Computer and Data Science)

rDai.md 2024-02-29

14 / 23

9 credits to fill:

ML supervised (4.5 credits)
ML unsupervised (4.5 credits)

(Looks like cannot be granted because AI Masters prerequisite Bachelor's level coursework is not elgible in
this category: tough bureaucracy!)

So then, I can offer:

Statistics for AI (6 credits, not in the prerequisites)
Basic Methods of Data Analysis (3 credits)

Oh, that's already 9! There are some other courses of interest available actually (looking at you, Semester III
and Shadow Semester IV), see the JKU AI Master's handbook for a current list.

Extra-Credit

Just kind of happened:

AI in Medicine (2 credits, JKU) - see if needed on transcript (it's there currently)
IDSA x Ars Electronica FOUNDING LAB Summer School (4 ECTS from IDSA/ITU) - not on transcript, that
is fine

Also

Math for AI II (6 credits, just the lecture, on my Master's transcript though the exercise for 3 credits is
listed in the Bachelor's transcript, technically - see Pre II)

probably not needed, along with a couple more exercises and lectures from the AI Bachelor's which will
probably not be credited towards my Master's, which is only okay in a county where the higher ed price tag
goes to zero/see above.

Appendix: Curriculum 2019 vs 2021, Spot the Difference!

https://studienhandbuch.jku.at/curr/989
https://it-u.at/

rDai.md 2024-02-29

15 / 23

Thesis (Seminar/Practical Work): Few-Shot/In-Context
Learning vs. Finetuning of LLMs for Document
Accessibility
For a rounded Masters Thesis, on an ECM-AI topic naturally, a comparative exploration of Finetuning
especially opposite In-Context Learning approaches is the goal, starting with a seminar on a current paper and
a company-affiliated (some more news to follow) practical work, all on the topic of making PDF-documents
accessible.

https://medium.com/@myschang/cot-in-large-language-models-in-context-learning-14d73ff57b90#:~:text=In%20Context%20Learning%20of%20CoT,examples%20to%20guide%20its%20reasoning.

rDai.md 2024-02-29

16 / 23

Very related to the EU Context: The European Accessibility Act (EAA) is an EU Directive that sets binding
accessibility goals to be achieved by all the member states, to be implemented by 2025.

Seminar: Language Models are Few-Shot Learners
(Masters-)Project is a Go! I even managed to get some Borges in, see slides three and four in the
presentation.

Delivered on December 11th, 2023, to IML (Machine Learning Insitute) at Johannes Kepler University.

Practical Work
TBD, e.g. a standard software component to check and transform PDFs to accessible formats in a fully
automated fashion.

Thesis
TBD fully, most likely a comparison with Finetuning appraches incl. use of open models like Llama.

Further Notes

This could be a real world application too, clearly, since the basic functionality can be distributed by API with
customization and standard software modules, as might be done for practical thesis work, on top: This idea
also provides a clear delineation between data-oriented service (transformation to barrier free documents)
and a module that would be implemented for a company in practical work, with loss of rights to such a
module.

Planning (2023 Project)
This is my second dive into SMT2 actually.

https://fep-fee.eu/IMG/pdf/20210629_european_accessibility_act_report_on_the_state_of_the_art_of_publishing_standards.pdf?1892/9929f3564221902d4ca19b53c0d4d9aa2118bb62
file:///c%3A/Public/heseltime/heseltime.github.io/assets/pdf/LtMDA-v2-1.pdf
file:///c%3A/Public/heseltime/heseltime.github.io/assets/pdf/LtMDA-v2-1.pdf
https://ai.meta.com/llama/

rDai.md 2024-02-29

17 / 23

For this project, full repo available, I was more involved in the SMT2 (Satisfiability Modulo Theories Version 2)
side, something I could imagine tying into (Python) projects in the future, for validation and checking (and
here planning) purposes - so I ended up exploring interfacing modalities, here the digram overview for Part 2
of the project, the SMT-part.

The actual application is the N-Queens Problem, specifically the 8x8 version, where my solution actually
implements a generator code file for generic problem sizes, together with MatPlotLib visualization actually:

https://github.com/heseltime/planning_reasoning/

rDai.md 2024-02-29

18 / 23

Part 1 is a Limboole implementation, see the repo: I like Limboole because it is a JKU project, as "a simple tool
for checking satisfiability respectively tautology on arbitrary structural formulas, and not just satisfiability for
formulas in conjunctive normal form (CNF), like the DIMACS format, which the standard input format of SAT
solvers. The tool can also be used as a translator of such structural problems into CNF." Quoted from the JKU
Insitute for Formal Models and Verification

A little more on JKU institutes actually: This concludes my Masters work in the JKU Symbolic AI Institute, where
the other course was Model Checking. Work with FAW, the institute, (Knowledge Representation and
Reasoning) is also already completed, apart from the Masters Thesis which will be co-supervised by FAW
(together with the Machine Learning Institute): leaving Automated Reasoning and Computer Algebra for 2024,
both located at RISC, which I hope to connect to from my work with Wolfram Language.

Taken together, this is a symbolic counterpoint to my thesis direction working in language models and
applications, reflected in my resarch (rX) feed going forward.

https://fmv.jku.at/limboole/
https://github.com/heseltime/planning_reasoning/
https://fmv.jku.at/index.html
https://www.jku.at/en/institute-for-symbolic-artificial-intelligence/
https://www.jku.at/en/institute-for-application-oriented-knowledge-processing/
https://www.jku.at/en/institute-for-machine-learning/
https://risc.jku.at/
file:///notes

rDai.md 2024-02-29

19 / 23

More details on my work in symbolic computation and Wolfram Language on my Wolfram page, touching on
my consulting work for the company as well.

Metamathematics, Mathematica, Lean (2023 Wolfram
Summer School)
I was a grad student participant in the 2023 Wolfram Summer School (WSS) three weeks in June and July
2023.

Somehow intertwined with this, for me subjectively: the Nativist/Symbolic vs. Empiricist/Neural Networks
debate, see Does AI need more innate machinery? (Mathematica is a symbolic computation tool.)

My main reason for WSS was a turn to further university level math and the realization that I want a standard
tool to do some of the work. More on a concept for these potential studies in Linz/Hagenberg (Austria,
Software Engineering and AI studies) incl. a view towards a Symbolic Computation PhD (again, writing it out
as a potential long-term view).

To connect Wolfram/Mathematica with my Masters-level courses: Computer Algebra and Automated
Reasoning (see concept document, these are the core RISC courses in my study track) require/substantially
benefit from Mathematica. Here, for now, is the poster output of the summer school.

file:///wolfram
https://www.youtube.com/watch?v=vdWPQ6iAkT4&themeRefresh=1
file:///c%3A/Public/heseltime/heseltime.github.io/assets/pdf/AI-SE-Symbolic-Computation-Concept.pdf

rDai.md 2024-02-29

20 / 23

rDai.md 2024-02-29

21 / 23

The final output of the school was a community post and presentation, forthcoming as a publication in the
2023 Wolfram Summer School Proceedings: I also handed in results and further study for my studies in
Software Engineering at Hagenberg, see the Software Engineering page about the thesis this became.

Knowledge Representation and Reasoning (2023
Project)

Prolog (Programming in Logic) implements First Order Logic, allowing evaluation and checking. Resolution
strategy is Back Tracking and Depth First, so logical programming is to a degree sequential as well, but not the
way programming laguages usually work. In this way it is similar to SMT, see below.

This is an example where the stopping criterion is needed for a recursive call, for instance:

lastElement([E],E). % (1)
lastElement([K|R],E) :- lastElement(R,E). % (2)

In any case a program like the above is built up, involving facts (1, the %-sign makes a line comment) and
rules (2), making for a knowledge base that can the be queried or used to proove certain statements, also
encoded in prolog. The tool used was SWI Prolog. The above code snippet also shows the typical use of
recursion to encode iteration.

In a project team of three, I tackled a solver for the game Ruzzle (a bit like scrabble) with possible uses as a
challenger AI or general solving tool. (Github has the code, and there's slides to get an overview over the
project too, presented at Johannes Kepler University on April 25th, 2023.)

Model Checking (2022 Project)
The full project is on GitHub, but the principles can be summed up in a paragraph: Satisfiability Modulo
Theories (SMT) is a growing area of automated deduction with many important applications, especially system
verification. The idea is to test satisfiability of a problem formula against a model. Here's an example: a C-
program is the model, some bug encoded into an formula is to be checked. If we get a satisfiable result, that
is bad, because that means the bug is possible against this particular C-program. So what you are usually after
in a verification task is actually an unsat(isfiable) result.

Here's a logic encoding of one of De Morgan's laws:

$$ {\displaystyle {\overline {a\land b}}\equiv {\overline {a}}\lor {\overline {b}}} $$

(declare-fun a () Bool)
(declare-fun b () Bool)

https://community.wolfram.com/groups/-/m/t/2957419
file:///c%3A/Public/heseltime/heseltime.github.io/pages/..%5Cassets%5Cpdf%5Cexpose-tree-pattern-function-native-export.pdf
https://www.maginteractive.com/games/ruzzle/
https://github.com/buchasia/prolog-ruzzle
https://docs.google.com/presentation/d/18AH9J0t4yj24fl6Qlm01qGRyB6TRpj3i9aj9wGxRCzc/
https://github.com/heseltime/modelchecking_project

rDai.md 2024-02-29

22 / 23

(assert (not (= (not (and a b)) (or (not a)(not b)))))
(check-sat)

Result:

unsat

The unsat result means that the negated (!) proposition (De Morgan's law) is not satisfiable: it is true.

The concrete application was a numerical pad implementing a locking system (think something like a safe),
coded up with C, and the task was to check for bugs. The final approach chosen by me and a project team of
another person was to encode eight separate SMT LIB (SMT-standard language) files to run with Z3,
Microsoft's SMT solver. This allowed us to rule out certain buggy behaviors to help locate the actual possible
bug in the C program.

Home

 <i class="ri-swap-line"></i>

 Feed

 <i class="ri-slideshow-2-line"></i>

 Portfolio

 <i class="ri-robot-line"></i>

 AI

 <i class="ri-command-line"></i>

 Software

 <svg class="indicator" width="94" height="56"
xmlns="http://www.w3.org/2000/svg">
 <ellipse cx="47" cy="28" rx="24" ry="28"/>
 <path d="M24 20C24 20 28 55.9999 48 56L0 55.9997C18 55.9998 24 20 24
20Z"/>

file:///

rDai.md 2024-02-29

23 / 23

 <path d="M70 20C70 20 66 55.9999 46 56L94 55.9997C76 55.9998 70 20 70
20Z"/>
 </svg>

<script src="{{ site.baseurl }}/assets-liquid-nav/js/main.js"></script>

