

Fachhochschul-Bachelorstudiengang
SOFTWARE ENGINEERING
A-4232 Hagenberg, Austria

Theorema Project: Document Processing

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science in Engineering

Eingereicht von

Jack Heseltine, BA

Begutachtet von Assoc. Prof. DI Dr. Wolfgang Windsteiger

Hagenberg, September 2024

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original work.
Where other sources of information have been used, they have been indicated as such and
properly acknowledged. I further declare that this or similar work has not been submitted
for credit elsewhere.

This printed thesis is identical with the electronic version submitted.

Date Signature

Contents

Declaration iii

Preface vii

Abstract viii

Kurzfassung ix

1 Introduction 1
1.1 Mathematica as Both a Tool and an Object of Study, at RISC: The

Theorema Project . 1
1.1.1 Starting from Rewriting: Mathematica and Wolfram Language as

a Programming Language . 1
1.1.2 Wolfram Language Expressions, Comparison to Object Oriented

Programming . 2
1.1.3 Wolfram Language as a Document Representation Format 3

1.2 Motivation . 4
1.2.1 Need: The LATEX-Standard for Academic Publishing in Mathe-

matical Disciplines . 4
1.2.2 Comparison to Existing Functionality in Mathematica 5

1.3 Development Environment . 7
1.3.1 Tools Used . 7
1.3.2 Platform-(In)dependence . 7

1.4 Mathematica/Wolfram Language Today 7
1.4.1 Mathematica vs Wolfram Language (vs Wolfram|Alpha) 7
1.4.2 The Wolfram Tool Chain Today and Its Criticisms 8
1.4.3 How Wolfram Research Views Mathematica/Wolfram Language:

The Computational Language Idea 9
1.4.4 The Connection to First Order Predicate Logic 10

2 Theoretical Background 11
2.1 Theorema . 11

2.1.1 Theorema vs Mathematica . 11
2.1.2 Theorema 2.0 - Theorema Commander, Current Project Structure 12
2.1.3 The Logic of Theorema . 13
2.1.4 Theorema Environment and Surfacing the Theorema Language . 14

iv

Contents v

2.2 Large Systems with Wolfram Language 15
2.2.1 Modularity with Packages . 17
2.2.2 Theorema as an Extensible Mathematica Package 17

2.3 Paradigms: The Project-Perspective on the Multi-Paradigm Approach in
Wolfram Language . 18
2.3.1 Functional vs Procedural Programming in Wolfram Language,

and the High-Level Programming Paradigm 18
2.3.2 Symbolic Expressions Lead to Rule-Based Programming and Pat-

tern Matching Approaches . 19
2.3.3 Rule-Based Programming . 19
2.3.4 Rule-Based Programming vs Rewriting, via Pattern Matching . . 21

3 Concept 23
3.1 Conceptual Cornerstones for this Project 23

3.1.1 WL-Native Approach for Direct Integration with Theorema . . . 23
3.1.2 Existing (Kernel) Functionality: Source Code Deep-Dive 23
3.1.3 Package/MakeTeX-Specification 27
3.1.4 For This Project: No Layout-Information in the LATEX 29
3.1.5 MakeBoxes: An Alternative Typesetting-Pipeline 31

3.2 Double Recursive Descent Through Wolfram and Theorema Language
Using Pattern Matching and Rule Based Programming 31
3.2.1 Pattern Matching to Realize LATEX-Transformation of Wolfram

Language Notebook Code . 32
3.2.2 Pattern Matching to Realize LATEX-Transformation of the Theo-

rema Language Data Structure 33
3.3 Extensibility in Both LATEXand Wolfram Language 33

3.3.1 A Note on Evaluation Criteria and Stability 33
3.3.2 WL-Messages and -Tests: Software Design Goals 33
3.3.3 Extensibility . 34

4 Implementation 35
4.1 Overview of the Implementation . 35

4.1.1 Note on Modular Programming in Wolfram Language 36
4.1.2 Overall Structure of the Package 36

4.2 High Level Programming in Practice . 36
4.2.1 Client Functions . 37
4.2.2 File-handling and LATEXDetails 39

4.3 Implementation of (Double) Recursive Descent with Pattern Matching . 40
4.3.1 General Remarks on Pattern Matching, and Execution Order, in

Wolfram Language . 40
4.3.2 Limited Approach of Specific Pattern Matching Rules 41
4.3.3 Generalized Parsing Approach for Theorema Data 42

5 Closing Words 46
5.1 Messages, Failures, and Testing in WL 46

5.1.1 Working with Messages in WL 47
5.1.2 Testing in the Wolfram Language 48

Contents vi

5.1.3 Testing Approach for this Project 49
5.2 Analysis and Review . 51
5.3 Final Closing Remarks: Wolfram Language as a Software Engineering

Tool and Integrating with Other Languages and Environments, Potential
Future Work . 51
5.3.1 Using Wolfram Language for Software Engineering 51
5.3.2 Potential Future Work . 52

A Technical Documentation/Source Code 53

B Supplementary Materials (Submission Repository) 71
B.1 PDF Files . 71
B.2 Program Files . 71

C Sample Document FirstTour 73

D Exposé: A Tree Pattern Function in Mathematica 75

References 88
Literature . 88

Preface

I would like to thank, in chronological order as pertains to this thesis, the following per-
sons who enabled this course of study and thesis in Hagenberg, both in the professional
and the educational context:

• at the Red Cross Blood Bank and Transfusion Center in Upper Austria, at Linz
General Hospital: DI Dr. Stephan Federsel and Dr. Norbert Niklas, IT leadership
at the blood bank, for making generous allowances for pursuit of the part-time,
Friday- (and Saturday-)form of the Software Engineering curriculum in Hagen-
berg, and for teaching me the value of quality software documentation;

• my advisor Assoc. Univ.-Prof. DI Dr. Wolfgang Windsteiger, but also the course
management (Studiengangsleitung) for Software Engineering, for being blind to
bureaucratic boundaries between Johannes Kepler University (JKU) and Fach-
hochschule Oberösterreich (Campus Hagenberg), so that the present thesis work
could be situtated at RISC, a JKU institute, but explore this Software Engineer-
ing topic in the domain of RISC’s general interest in Symbolic Computation and
using Mathematica in particular, and Prof. Windsteiger for his patience as well;

• the wonderful people in Educational Outreach under Mads Bahrami, PhD, at
Wolfram Research, headquartered in Champaign, Illinois, for not just allowing
me to participate in the Wolfram Summer School 2023, but also fully funding
it, significantly accelerating learning of the Wolfram Language, and subsequently
accepting my application for the role of Software Engineer in the Cloud Team at
the company. In a full circle journey, I am teaching at Wolfram Summer Research
Program 2024, the format for high schoolers, drawing on the understanding gained
in the writing of this thesis, as well as the summer school, and looking forward to
presenting results and methods deployed here to eager young students -

• - for which, again, I am thankful to Wolfram Research but especially my manager,
John Pacey, for allowing this kind of flexibility. The same I would also like to thank
for use of learning and time on the job as the work placement requirement in the
field of Software Engineering for o�cial completion of the course of study;

• finally I would also like to thank my colleague and team lead, Joel Klein, for the
training in using Wolfram Language as an engineering tool and patience, and very
often his marked pleasure, in answering my many technical questions.

I am immensely grateful for your trust, patience (once again), and also your com-
mitment to continued learning and quality of your work, which is truly inspiring.

vii

Abstract

This work explores the Wolfram Language as a Software Engineering tool, with a par-
ticular focus on the Theorema mathematical software package, in combination with
the LATEXtypesetting system. It delves into the advanced functionalities and paradigms
of Wolfram Language, including high-level programming, functional programming, and
pattern matching, to showcase these capabilities beyond object oriented programming
languages in particular, as applied to mathematical document transformation.

Through Theorema, package development using Wolfram Language is demonstrated
from conception through execution to the point that the new package can be easily in-
tegrated with the existing Theorema system: the associated analysis touches on the
workings of Theorema but the focus is on an implementational bridge between compu-
tational mathematics and document preparation, aiming to provide easy extensibility
and delivering on further Software Engineering principles to make for a rounded Wol-
fram Language and Theorema package, as the final project output.

The thesis also addresses the challenges and methodologies associated with the
LATEXtypesetting of mathematical content, emphasizing the transformation of Wolfram
Language/Theorema notebooks using a Wolfram-Language-native approach. This in-
cludes an examination of first-order predicate logic symbols, to ensure coverage at the
output side, and the role of (mathematical) expressions in Wolfram Language, the input
side, showcasing back-and-forth between typesetting and (symbolic) computational lan-
guages, and particularly, recursive parsing of entire notebook expressions as the basic
working principle in this approach.

viii

Kurzfassung

Diese Arbeit untersucht die Wolfram Language als ein Software Engineering Werk-
zeug, mit einem besonderen Fokus auf das mathematische Softwarepaket Theorema in
Kombination mit dem LATEX-Textsatzsystem. Sie vertieft sich in die fortgeschrittenen
Funktionalitäten und Paradigmen der Wolfram Language, einschließlich der High Level
Programmierung, der funktionalen Programmierung und des Pattern Matchings, um
diese Fähigkeiten auch über die objektorientierte Programmierung hinaus zu demons-
trieren, besonders im Hinblick auf die Transformation mathematischer Dokumente.

Mittels Theorema wird die Entwicklung von Packages in der Wolfram Language
von der Konzeption über die Ausführung bis zu dem Punkt, an dem das neue Paket
problemlos in das bestehende Theorema-System integriert werden kann, demonstriert.
Die zugehörige Analyse befasst sich mit der Funktionsweise von Theorema, wobei der
Schwerpunkt auf einer implementierungstechnischen Brücke zwischen computergestütz-
ter Mathematik und Dokumentenvorbereitung liegt. Das Ziel ist es, einfache Erweiter-
barkeit zu ermöglichen und weitere Prinzipien des Software Engineerings zu realisieren,
um ein umfassendes Wolfram und Theorema Language Package als Endprodukt des
Projekts zu liefern.

Die Arbeit thematisiert auch die Herausforderungen und Methodologien, die mit
dem LATEX-Textsatz von mathematischem Inhalt verbunden sind, und beleuchtet be-
sonders die Transformation von Wolfram/Theorema-Notebooks nativ in der Wolfram
Language. Dies beinhaltet eine Untersuchung von Symbolen der Prädikatenlogik erster
Ordnung, um die Abdeckung auf der Ausgabeseite sicherzustellen, und die Rolle von
(mathematischen) Ausdrücken (Expressions) in der Wolfram Language, der Eingabe-
seite, die die gegenseitige Kommunikation von zwischen Textsatz- und (symbolischer)
Programmiersprache aufzeigt, insbesondere das rekursive Parsen von ganzen Notebook
Expressions als grundlegendes Arbeitsprinzip des gewählten Ansatzes.

ix

Chapter 1

Introduction

1.1 Mathematica as Both a Tool and an Object of Study, at RISC:
The Theorema Project

RISC has a notable relationship to Mathematica: a quick glance at the list of software
packages produced by RISC (“Symbolic computation can be seen as the automation
and algorithmization of mathematics. Therefore, most of what we do results in con-
crete software.” [47]) demonstrates this: across di�erent branches of Mathematics, many
packages are Mathematica packages.

The Theorema Project is a long-standing e�ort originated by Bruno Buchberger and
continued by Wolfgang Windsteiger to this day. It will be explored in some detail and
with a view to extending it as a collection of Mathematica packages in the following
chapter on Theory 2, where this thesis accompanies a practical work, using Wolfram
Language (WL) as an engineering tool. Therefore this thesis also has an applications
slant, focusing on various aspects of the development of such a package, up to some
theory, in rewriting and exploring Theorema particularly.

1.1.1 Starting from Rewriting: Mathematica and Wolfram Language as a
Programming Language

Mathematica is not Wolfram Language, where in “a first approximation, the Wolfram
Language = Mathematica + Wolfram|Alpha [a knowledge-based web service] + Cloud
[a storage-oriented web service] + more” [63], but this disambiguation will be made
again in 1.4.1: at the time Bruno Buchberger was writing, it was the same thing, and it
is particularly in “Mathematica as a Rewrite Language” [7] that crucial analysis, here
from the perspective of the field of rewriting, is made that seems to get to the core of
what the language does and can do really well. Under the assumption that it is worth
looking at the set of features that make the language stand apart, I would like to follow
Buchberger’s thoughts on Mathematica as a language for rewriting to begin.

Remarking on the stability of Mathematica, Buchberger observes that “Wolfram’s
pattern matching is essentially the natural concept of conditional rewriting.” [7, p. 2]
Writing for an intended audience of both mathematicians in rewriting and Mathematica
developers (the groups he poses would benefit from mutual exchange, in [7]), Buchberger

1

1. Introduction 2

mostly o�eres a definition of the rewriting concept in terms of Mathematica syntax,
also useful here. The foundational language constructs according to Buchberger are
“constants, ordinary variables, sequence variables, expressions and conditional equalities
(rewrite rules)” [7, p. 3]: in order, constants in Mathematica are user-defined and may
have “built-in” meaning (like “Sin”); identifiers can be written as variables by following
them immediately with an underscore as in “x_”; sequence variables specify one, no,
or multiple occurrence and are introduced with three underscores after the identifier as
in “x___” (BlankNullSequence is the Wolfram Language term [4]); and now it gets
interesting.

Mathematica expressions are defined like this by Buchberger:

Any constant and any ordinary variable is a Mathematica expression. If
F is an expression that is not a variable and T1, . . . , Tn are expressions or
sequence variables then

F [T1, . . . , Tn]

is also an expression. (Such an expression is called a “compound expression”
or “application expression”.) [7, p. 4]

For example, integers, or “Sin[Plus[2,x_]]” are expressions. For an expression like
Plus, or any generic F[x, y] (in standard form [17]), taking two or more arguments, there
also exists the infix notation x ≥ f ≥ y [17], and for single-argument expressions, prefix
and postfix using symbols, f @ x and x \\f [17] respectively.

Buchberger considers Mathematica function definitions (conditional) rewrite rules
[7, p. 5] of the form:

lhsExpr := rhsExpr(/; condition)

The bracketed condition need not occur and lhsExpr may not be a variable, as in
a simple assignment. Then, “Mathematica programs are just finite sequences of such
(conditional) rewrite rules separated by semicolons.” [7, p. 5] (The semicolon in Wolfram
Language is a built-in symbol symbolizing a CompoundExpression [12], it is also used
to suppress output of evaluation if placed immediately after an expression [49].) These
ideas will be revisited in Chapter 2: the main point here is that the evaluation mechanism
in Mathematica [TODO: reference] [TODO: formulare the application of rewrite rules
until none are elft, compare this mechanism to other programming languages and maybe
matlab too, and make the connection to math and the name mathematica]

1.1.2 Wolfram Language Expressions, Comparison to Object Oriented Programming
Buchberger points out that ’the mechanism for associating rules with identifiers opens
an immediate possibility for realizing “object oriented programming” in Mathematica’
in [7, p. 7] by referencing The Mathematica Book of 1996 in turn, particularly up-values
(“UpValues” in current Wolfram Language syntax) in Mathematica (at the time, Version
3.0): object oriented programming can be practised directly, beyond simply thinking of
expressions as objects, in this way.

The quat object in question is an instance of “a class of abstract mathematical objects
of type quat” [63, At the end of section 2.4.10, Associating Definitions with Di�erent

1. Introduction 3

Symbols] Wolfram introduces to fulfill certain properties that “overload” arithmetic op-
erations as an example. To “tag” Mathematica data (expressions) as quat objects would
entail defining their heads like quat[data]. Here tagging is taken to mean specifiying the
type of an expression.

Upvalues are then used to specify the form arithmetic operations like addition take
on when it comes to quat objects, see the following code example taken from [63, At
the end of section 2.4.10, Associating Definitions with Di�erent Symbols], where the
following expression defines an upvalue for quat with respect to Plus (Quaternions [36]).

quat[x_] + quat[y_] ^:= quat[x + y]

That is, delayed assignments are associated with quat-objects (the “gs” of the relevant
Wolfram TechDoc [76, in section Associating Definitions with Di�erent Symbols]), so
that at least since Mathematica Version 3.0 an evaluation of the following form would
take place:

quat[a] + quat[b] + quat[c] = quat[a + b + c]

Or, “when you define an upvalue for quat with respect to an operation like Plus,
what you are e�ectively doing is to extend the domain of the Plus operation to include
quat objects. You are telling Mathematica to use special rules for addition in the case
where the things to be added together are quat objects.” [63, At the end of section
2.4.10, Associating Definitions with Di�erent Symbols]

This becomes yet another interpretation of Wolfram Language expressions [67, The
Meaning of Expressions].

1.1.3 Wolfram Language as a Document Representation Format
Since everything is an expression in Wolfram Language (“everything you type into the
Wolfram Language is treated as an expression,” [17]) so too is a complete notebook: A
quick look at the Test Notebook listing in Section A shows some comment-lines with
metadata such as Mathematica version and internal caching information, but mostly
one big Notebook[] expression, the “the low-level construct that represents a notebook
manipulated by the Wolfram System front end.” [40]

It in turn consists of Cell[]s, “the low-level representation of a cell inside a Wolfram
System notebook.” [10] Again, the structure is defined in terms of its front-end purpose,
which is to organize input and output: examples can be found in [63].

The front-end allows switching between rendered cells and their expression format,
using the keyboard shortcuts documented in [9], or the “Cell” menu item “Show Ex-
pression,” demonstrated in Figures 1.1 and 1.2.

As in the FirstTour test notebook, the cells that make up the Notebook[] expression
(collected in a list), mostly contain in BoxData[] and related structures (again, “low-level”
representations [6]), used for typesetting: ’When Wolfram Language expressions are
displayed in notebooks, they are represented by two-dimensional typesetting structures
of “boxes”’ [19] - thus, the typesetting mechanism for Wolfram Language notebooks
is the combination of these box structures, also expressions of course, with cell- and
notebook-expressions. Any parsing on a notebook therefore takes place in relation to
these basic structural elements.

1. Introduction 4

Figure 1.1: In Mathematica Desktop, Cell menu and then “Show Expression” reveals ...

Figure 1.2: ... the lower level expression encoding the typesetting information for what
is rendered by the front-end part of the system.

1.2 Motivation
The motivation for this project is two-fold: First, LATEXis a standard widely used in
technical and scientific communities, including journals of relevance to RISC, for exam-
ple. Second, the native export functionality provided in Mathematica out of the box is
not tailored to the Theorema background evaluation of formula representations despite
their relevance to Theorema-publications.

The status quo this project seeks to address is the labor-intensive, manual LATEX-
preparation of formulae from Theorema notebooks for publication purposes.

1.2.1 Need: The LATEX-Standard for Academic Publishing in Mathematical
Disciplines

The LATEX-typesetting software system is maintained by The Latex Project [30]: In
their words, “LATEXis the de facto standard for the communication and publication of
scientific documents.” [31]

1. Introduction 5

The current thesis is not so much about the format as it is about WL as an engi-
neering tool for the Theorema context and transforming WL/Theorema-notebooks to
this format, but the short form history and overview feature list of the system shall be
included here: It is based on Donald E. Knuth’s TeX typesetting language, where LaTeX
was first developed in 1985 by Leslie Lamport (the “La” in LaTeX), and currently by
The LaTeX Project. [30]

The Latex Project lists the system’s current set of features as follows [29].
• Typesetting journal articles, technical reports, books, and slide presentations.
• Control over large documents containing sectioning, cross-references, tables and

figures.
• Typesetting of complex mathematical formulas.
• Advanced typesetting of mathematics with AMS (American Mathematical Soci-

ety) LaTeX.
• Automatic generation of bibliographies and indexes.
• Multi-lingual typesetting.
• Inclusion of artwork, and process or spot colour.
• Using PostScript or Metafont fonts.

1.2.2 Comparison to Existing Functionality in Mathematica
Mathematica provides native LATEX-export functionality, drawing on AMS-LaTeX, al-
ready listed in in the features of the system: AMS-LaTeX extensions are included in
the standard LaTeX distribution, where the “amsmath part is an extension package for
LaTeX that provides various features to facilitate writing math formulas and to improve
the typographical quality of their output.” [2] This can be shown by following the steps
shown in Figures 1.3 and 1.4 to save a notebook in in the LATEX-format in the “Save as
...” menu.

Figure 1.3: In Mathematica Desktop, file menu and then “Save as ...” leads to the option
to save any notebook in LATEXformat.

The .TeX-file produced consists of these lines, implementing related package imports
and document setup commands.

%% AMS-LaTeX Created with the Wolfram Language : www.wolfram.com

\documentclass{article}
\usepackage{amsmath, amssymb, graphics, setspace}

1. Introduction 6

Figure 1.4: There are also other export options next to default Mathematica notebook
save option, and LATEX-Format, the option of interest at this point.

\newcommand{\mathsym}[1]{{}}
\newcommand{\unicode}[1]{{}}

\newcounter{mathematicapage}
\begin{document}

\end{document}
\end{LaTeXCode}
\end{program}

Crucially for this project, this native Mathematica solution does not work well for
Theorema notebooks, as is easily seen when attempting to use this feature for this
project’s main test object, FirstTour.nb (provided in the project files), see Figure ??,
the PDF-rendering of the native LATEX-export (based on FirstTourNativeExport.tex,
also provided in the project repository).

The WL (in-notebook) function TeXForm handles the cell-level transformation abd
will be the basic Kernel-level functionality that is expanded upon to realize the funda-
mental transformation functionality in this project, discussed in Section 3.1.2.

1. Introduction 7

1.3 Development Environment

1.3.1 Tools Used
In the present work, Mathematica and WolframKernel 14.1 [63] are used throughout:
Screenshots of Mathematica for desktop are used to show code evaluation where the
frontend is relevant, and IntelliJ IDEA 2022.3.3 [28] is used in conjunction with the
IntelliJ plugin Wolfram Language by Hal’s Corner [64] for syntax highlighting, as a
guide for setting up a modern WL development environment and note on the present
work’s tooling: to reproduce this setup, simply install Mathematica (may require a
license) and IntelliJ, then the plugin inside of the IntelliJ settings.

1.3.2 Platform-(In)dependence
Core concepts employed in this work to answer the challenge outlined in section 1.2,
for example pattern matching, related to the symbolic approach already discussed and
explored in depth in Sections 3.2 and 4.3, are central to WL and the platform as a whole,
making backwards and forwards compatibility within the Mathematica ecosystem highly
likely.

Since this work transforms Theorema documents and Theorema extends Wolfram
Language, the tool developed here can be applied to vanilla Mathematica notebooks
(Wolfram Language under the hood, that is, see section 1.4.1 on the relevant terminol-
ogy) as well, see section ??: The application requires execution on a compatible WL
kernel setup. So, while the package is not, in principle, dependent on Theorema, and will
simply transform available patterns in the input data - if these are not present, there is
limited transformation - it is entirely dependent on the Wolfram Kernel included with
Mathematica distributions.

On the level of the operating system, this implementation is platform-independent
and benefits from the Wolfram Language ecosystem setup (see criticisms in Section
1.4.2) the way Theorema does, because (of) “Mathematica programs run without any
modifications on essentially all available operating system platforms (Linux, OS X, and
Windows), the powerful development group at Wolfram Research that keeps Mathemat-
ica being always an up-to-date platform growing into various directions, and the huge
group of Mathematica users.” [61, p. 72]

1.4 Mathematica/Wolfram Language Today

1.4.1 Mathematica vs Wolfram Language (vs Wolfram|Alpha)
This disambiguation should be helpful for anyone new to the Wolfram ecosystem or
“tech stack,” as it is currently marketed: [63]

• Mathematica: the Desktop application, first introduced in 1988 and available for
download in Version 14.1 currently. It is a proprietary technology available at a
subscription cost. [64]

• Wolfram Language: Frequently described as a “symbolic language,” it is also the
language that the Mathematica kernel is developed in and runs on. WL can be

1. Introduction 8

executed inside Mathematica. A Mathematica package typically has the file ending
“.wl” (previously “.m”) and can be called from inside Mathematica (a Mathematica
notebook). It is also in principle closed source [63] and available for licensing.

• Wolfram|Alpha: publicly available at no cost in the base version [83] this product
is sometimes conflated with Mathematica or Wolfram Language due to its pub-
lic profile. “Wolfram|Alpha’s long-term goal is to make all systematic knowledge
immediately computable and accessible to everyone.” [66]

1.4.2 The Wolfram Tool Chain Today and Its Criticisms
Mathematica, first appearing in 1988, is available in Version 14.1 at the time of writing
and is being actively developed by Wolfram Research, with “new and improved” features
(since Version 13.3) spanning topical categories like Mathematical Computation, Ma-
chine Learning and Neural Networks, High-Dimensional Visualization and Astronomy in
addition to Core Language, Importing and Exporting and similar base categories. [62]]
Mathematica, the Desktop application, continues to be Wolfram Research’s core prod-
uct, being marketed as the “world’s definitive system for modern technical computing”
[64] and is distinguished from underlying technologies (Wolfram Language, Wolfram
Cloud, Wolfram Knowledgebase, to name a few out of a longer list [64]) and contrasts
with the more unified platform approach of Wolfram|One [84], the publicly available
Wolfram|Alpha [83], a set of mobile apps [63] and further, more dedicated, products
and services.

The size of the program and progress in development is typically measured in num-
ber of “in-built functions,” that is, functions providing specific functionality, many levels
of abstraction higher than the data structure and algorithm oriented functions provided
by conventional languages and frameworks: see the following section 1.4.4 for the ex-
ploration of this idea. The current count of in-built functions, 6602 for the latest major
release 14.0 [71] and, for the newly released (minor) Version 14.1, up 89 to a new total
of 6691 [82], with the trajectory since Version 1.0 in 1988 given in Figure 1.5.

Figure 1.5: In Mathematica Desktop, there are now over 6000 “built-in functions.” [64]

Criticism of the Wolfram products typically hinge on its closed-source, for-cost na-
ture, though can also be extended to performance and trust in/vendor-lock-in with
the company maintaining it, see for example [58]. Specifically the former has been ad-

1. Introduction 9

dressed as matters of philosophy when it comes to developing a programming language
and associated ecosystem: “The simple answer is that large-scale, unified design requires
centralized control and sustained e�ort that we feel is less achievable with free and open-
source software” [63] is the o�cial customer facing answer in this proprietary context. A
more extensive statement is given in [59], outlining 12 reasons for being closed-source,
proprietary and at-cost, similar but slightly di�erent aspects of this question.

Since this chapter started with Bruno Buchberger, I want to bring this particular
question to his view, also mentioned in [7]: the professional development and marketing
of Mathematica “is a feature that may have disadvantages for the research community
because the code of the kernel of professional systems is normally not open for the user.
On the other hand, it also provides some definite advantages as, for example, professional
maintenance, high performance [!], professional software production tools, and - in the
case of Mathematica - a fantastic front end.” (p. 2) Buchberger was writing to Version
3.0 of Mathematica (in 1996) and is of course speaking of performance as it relates
to e�cient algorithms implemented in C that the kernel relies on, especially complex
calculations “implementing the presently best mathematical methods in various fields”
(p. 2), rather than performance as it pertains to the system and Mathematica kernel
evaluations as a whole and how these might be compared against fully native C or other,
lower level programming languages.

1.4.3 How Wolfram Research Views Mathematica/Wolfram Language: The
Computational Language Idea

In addressing the question, “What Kind of a Thing Is the Wolfram Language?” [57],
Stephen Wolfram, in some position to answer this, as the founder and current CEO
of Wolfram Research and originator of the language, espouses the idea of a “compu-
tational” language, ’a way to apply the computational paradigm directly to almost
anything: we have a language and a notation for doing computational X, for basically
any field “X” (from archaeology to zoology, and beyond).’ [57] Such a multi-purpose
tool is di�erentiated from conventional programming languages in the following way,
relevant to the present work.

First and foremost, it’s that a computational language tries to intrinsically
be able to talk about whatever one might think about in a computational
way—while a programming language is set up to intrinsically talk only about
things one can directly program a computer to do. So for example, a compu-
tational language can intrinsically talk about things in the real world—like
the planet Mars or New York City or a chocolate chip cookie. A program-
ming language can intrinsically talk only about abstract data structures in
a computer. [57]

Mars [42] and New York City [11] are examples of entities that can be addressed in
WL using the so-called Wolfram Knowledgebase [63], which also powers Wolfram Alpha
[13], another Wolfram Research product. The idea of the computational language turns
on this easy access to data, as well as pre-built, high-level functions (“while the core of a
standard programming language typically has perhaps a few tens of primitive functions
built in, the Wolfram Language has more than 5600” at the time of writing [57], in 2019

1. Introduction 10

- now 6602 in Mathematica and WL Version 14.1 [55] in 2024, five years on) operating
on the WL expression structure.

This latter and the symbolic notion in an extended sense are seen as key in this pre-
sentation; to conclude it, and to give the intuition for the symbolic expressions and how
they relate to the central pattern matching approach in Wolfram Language program-
ming for processing expressions, not too di�erent from Regular Expressions matching
for strings (of text characters) in more conventional programming contexts:

In most standard programming languages, x on its own without a value
doesn’t mean anything; it has to stand for some structure in the memory of
the computer. But in a computational language, one’s got to be able to have
things that are purely symbolic, and that represent, for example, entities in
the real world—that one can operate on just like any other kind of data.[57]

For the purposes of this work, in document transformation, where it has already
been established that the document in question, a Mathematica notebook, is also such
a symbolic expression, the idea simply means that any document following the (sym-
bolic, that is expressions-)structure of a Theorema notebook can be processed using the
Tma2TeX package: the symbolic in a symbolic expression is to mean something like a
class of object, where their particular expression structure (“A foundational idea in the
Wolfram Language is that all expressions—whatever they may represent—ultimately
have a uniform tree-like structure,” [16]) including the individual expressions (their so-
called expression “heads,” [25]) match at the relevant level of abstraction. This level will
be the defining mechanism that makes out the pattern matching approach, explored in
the Theory chapter (2) in this work, Section 2.3.2.

1.4.4 The Connection to First Order Predicate Logic
In propositional logic, it is not possible to model predicates like “x is prime”, nor can
we reason about statements like “for all x, there exists y such that y is a factor of x”.
[35]

To handle these kinds of statements, predicates and quantifiers need to be intro-
duced; this extended logic is referred to as predicate logic or first-order logic (FOPL):

„ œ Formulae ::= · · · | P (x1, x2, . . .) | ’x, „ | ÷x, „

where x is drawn from a fixed set of variables. [35]
Formally, an interpretation can be modeled as a set D and a function I : Pred ◊

D ◊ D ◊ D ◊ · · · æ {T, F} so that one can talk about the truth of a formula in a given
interpretation. [35]

WL, as a framework, aligns with FOPL, in the sense of the Computational Language
concept already explored, leveraging the ability of users to express computational ideas
at a high level, in a FOPL style, but providing the means to evaluate expressions,
integrating various data types and a sophisticated set of algorithms and front end, and
other aspects of a “system for doing mathematics by computer” [69].

As a thesis in the field of Software Engineering, this work will limit its theoretical
exploration of the project topic to the technical aspects of the implementation, rather
than the mathematical ones, in the following chapter.

Chapter 2

Theoretical Background: Theorema and
Software Engineering, and the
Project-Perspective on Programming
Paradigms in Wolfram Language

This thesis already started o� with rewriting-theory, so in this chapter I would like to
focus the relevant insights from Theorema itself, as well as WL-systems-building and
WL-paradigms, on practically relevant takeaways for the project part.

2.1 Theorema

Theorema is currently available in Version 2.0, under GPL [27] and inlcuding the full
source code on GitHub [24]. A tutorial is available as well. [60]

Relating the original goal of The Theorema Project with the current project, this
foreword excerpt contextualizes Theorema in the world of theorem provers (as of 2006)
by comparing the system to 16 others in the same class of system:

We can also see clearly from the examples in this collection that the nota-
tions for input and output have to be made more human readable. Several
systems do generate LaTeX output for the discovered proofs, but perhaps
additional thought about formatting output might be valuable. The The-
orema Project (system 12 in the present list) made readability of proofs a
prime requirement, and their report shows their success. However, the ob-
jective Prof. Bruno Buchberger set originally for the project was to produce
a tool for pedagogic use, not research. [22, p. 4]

2.1.1 Theorema vs Mathematica
Just as we were interested in disambiguating Mathematica and Wolfram Language, to
di�erentiate Theorema (Language) from the former two:

11

2. Theoretical Background 12

All Theorema ‘reasoners’ (provers, solvers, and simplifiers) are written in the
programming language of Mathematica. Theorema does not use the Math-
ematica algorithm library or any implicit mathematical knowledge presup-
posed in Mathematica algorithms. [22, p. 110]

In current speak, Theorema is implemented in Wolfram Language - but not using
in-built algorithms or knowledge, such as the native experimental (in Version 14.0)
functions ProofObject [44] and FindEquationalProof [20].

2.1.2 Theorema 2.0 - Theorema Commander, Current Project Structure
Theorema 2.0 most prominently introduces an interactive graphical user interface (GUI)
to realize a full fledged mathematical assistant system, depicted in Figures 2.1 (splash
screen at application start), 2.2 (start screen under Windows) and 2.3 (again the Theo-
rema Commander, this time under Linux, taken from [61]), profiting from GUI-friendly
dynamic expressions [29, p. 76] and cascading stylesheets [48] both introduced with
Mathematica Version 6 to realize a native implementation. The mode of interacting
with the system fundamentally changes to be more newcomer friendly, because less
relient on prior knowledge of the language:

Figure 2.1: The Theorema splash screen introducing the project and including a spinning
RISC logo in the background.

As an example, giving a definition meant evaluation of a Definition[...]-
command, stating a theorem meant evaluation of a Theorem[...]-command,

2. Theoretical Background 13

Figure 2.2: The start view in the Theorema Commander window: on Windows, the
Commander opens in its own window, emulating an interface for a separate notebook.

proving a theorem meant evaluation of a Prove[...]-command, and perform-
ing a computation meant evaluation of a Compute[...]-command. For the new
Theorema 2.0 system, we envisage a more ‘point-and-click’-like interface as
one is used to from modern software tools like a mail user agent or o�ce
software. [61, p. 73]

The target user groups are mathematicians and students of mathematics [61, p. 73]
Since the Theorema provers are composed of smaller “special prover models” that can
be recombined: “In the current status, the access to special prover modules is restricted
to the system developers, but a mechanism for users to compose their own provers from
available special prover modules is planned for future versions of the system.” [22, p.
111]

The current project structure is also made explicit in Figure 2.5.

2.1.3 The Logic of Theorema
’The logic frame of Theorema is higher order predicate logic, which is extended by the
language construct “sequence variables,”’ [22, p. 110] already introduced in Section 1.1.1

2. Theoretical Background 14

Figure 2.3: Taken from [61], this side-by-side view of a notebook with the Commander
also shows o� the virtual keyboard, including “keys” for formula elements: comparing
to the current version of the Commander in 2.2, some changes have been made to the
interface options, e.g. “Session” appears to be “Prepare”

and allowing for pattern matching capabilities. In this view, “the Theorema system is a
(growing) collection of various general purpose and special theorem provers. The general
purpose provers (like the first order predicate logic natural deduction prover) are valid
only for special fragments of predicate logic (e.g. first order predicate logic).” [22, p.
110] The more assumptions are made, the more specialized the prover module that is
consulted.

The consequence of this theory for the current project of transforming Theorema
documents is that the LATEXtransformation target language needs to be able to represent
Predicate Logic, and particularly, First Order Predicate Logic (FOPL).

2.1.4 Theorema Environment and Surfacing the Theorema Language
Theorema data is read from Mathematica notebooks [61, p. 75], but exists beyond the
data directly visible in the front-end (this needs to be loaded at the appropriate time
ahead of the LATEX-transformation, so that this authoritative form of the formula is
the source of the transformation) - for display purposes, Theorema also defines specific
stylesheets, changing the visual appearance from standard Mathematica notebooks, vis-
ible in Figure 2.3.

As soon as the [Theorema] formula is passed to the system through Mathe-

2. Theoretical Background 15

matica’s standard Shift-Enter, the formula is stored in an internal datastruc-
ture that carries a unique key for each formula in addition to the formula
itself and its label. This key consists of the absolute pathname of the note-
book file in which it was given, and the unique cell-ID within that notebook,
which is provided by the Mathematica front-end. [61, p. 75]

We already saw a Theorema formula expression in the introductory chapter 1, Sec-
tion ??: the structure starts like {Theorema�Common�FML$[{"ID:169304498", ... where we
actually looking at a list of (denoted by curly braces) containing multiple Theorema�
Common�FML$ expressions, each in turn containing a list, and then some more data, but
inside the list the first element is the unique cell-ID that the front-end provided. But,
“the user never sees nor needs the concrete formula key explicitly.” [61, p. 75]

There is a hidden complication at this connection between front-end and internal
datastructure: To capture the idea of a scope to make definitions in, Theorema allows
for global declarations, ’which may either contain one or several “orphaned” universal
quantifiers (each containing a variable and an optional condition, but missing the for-
mula, to which thery refer) or an “orphaned” implication (missing the right hand side),
or an abbreviation indicated by a “let.”’ [61] names this biimplication:

bids[b] :≈∆ ’j=1,··· ,|b|bj Ø 0[61, p.76]

This actually translates to:

’bbids[b] :≈∆ ’j=1,··· ,|b|bj Ø 0[61, p.76]

To make the idea specific to WL, an example from this project’s main test notebook,
FirstTour.nb, tracing such a declaration from its display in the front-end 2.4, to its note-
book cell structure 2.1, and finally, to its Theorema formula correlate 2.2, helps clarify
this aspect of Theorema, relevant to the current goal of rendering an accurate output in
LATEX: The question for the implementation will be how to obtain the Theorema-formula
per relevant notebook cell and decide about a full length output (with global declara-
tions) or a somehow trimmed version that is closer to the localized definition: further,
it will likely be this hidden Theorema-representation we want to make visible by out-
putting the output document, rather than the purely-Wolfram-Language representation
of the cell (structure) that holds the code for the display of the formula.

2.2 Large Systems with Wolfram Language
Wolfram Research advocates for building large systems in WL and cites the WL system
itself as “one of the more complex software systems ever constructed. It is built from
several million lines of source code, written in C/C++, Java, and the Wolfram Lan-
guage.” [54, The Software Engineering of the Wolfram System] Wolfram Research cites
the following general principles and more as they concern building large systems in any
language [8]:

• Divide the System into Components
• Write and Use Unit Tests

2. Theoretical Background 16

Program 2.1: This is an excerpt from the notebook cell expression depicted in the front-
end rendering in Figure 2.4 and contains just one such global declaration, UnderscriptBox
["[ForAll]", "K"]] as the pertinent line from this cell structure.

1 ...
2 Cell[BoxData[
3 UnderscriptBox["\[ForAll]", "K"]], "GlobalDeclaration",
4 CellFrameLabels->{{None,
5 Cell[
6 BoxData[
7 ButtonBox[
8 "\[Times]", Evaluator -> Automatic, Appearance -> None, ButtonFunction :>
9 Theorema�Language�Session�Private�removeGlobal[{

10 "C:\\Users\\jackh\\OneDrive\\Documents\\RISC2023\\prototype-wolfram-\
11 lang\\FirstTour.nb", 2090454223}]]]]}, {None, None}},
12 ShowCellTags->False,
13 CellChangeTimes->{{3.62218621587292*^9, 3.622186218593838*^9}},
14 EmphasizeSyntaxErrors->True,
15 CellTags->"ID:2090454223",
16 CellLabel->"In[1]:=",
17 CellID->2090454223,ExpressionUUID->"809f4e1b-f26c-4265-a5d0-d66f43b5b903"]
18 ...

Program 2.2: This is another Theorema formula and contains as part of it the global
declaration term encoded in the notebook expression in 2.1.

1 Theorema�Common�FML$[{"ID:2008910260",
2 "Source:C:\\Users\\jackh\\git\\repository\\tma2tex\\FirstTour.nb"},
3 Theorema�Language�EqualDef$TM[
4 Theorema�Language�DomainOperation$TM[Theorema�Knowledge�M$TM,
5 Theorema�Language�Times$TM][Theorema�Knowledge�m1$TM,
6 Theorema�Knowledge�m2$TM],
7 Theorema�Language�Tuple$TM[
8 Theorema�Language�DomainOperation$TM[Theorema�Language�K$TM,
9 Theorema�Language�Times$TM][

10 Theorema�Language�Subscript$TM[Theorema�Knowledge�m1$TM, 1],
11 Theorema�Language�Subscript$TM[Theorema�Knowledge�m2$TM, 1]],
12 Theorema�Language�TupleOf$TM[
13 Theorema�Language�RNG$[
14 Theorema�Language�STEPRNG$[
15 Theorema�Language�VAR$[Theorema�Knowledge�VAR$i$TM], 1,
16 Theorema�Language�BracketingBar$TM[
17 Theorema�Language�Subscript$TM[Theorema�Knowledge�m1$TM, 2]],
18 1]], True,
19 Theorema�Language�DomainOperation$TM[
20 Theorema�Language�IntegerInterval$TM[1, \[Infinity], True,
21 False], Theorema�Language�Plus$TM][
22 Theorema�Language�Subscript$TM[
23 Theorema�Language�Subscript$TM[Theorema�Knowledge�m1$TM, 2],
24 Theorema�Language�VAR$[Theorema�Knowledge�VAR$i$TM]],
25 Theorema�Language�Subscript$TM[
26 Theorema�Language�Subscript$TM[Theorema�Knowledge�m2$TM, 2],
27 Theorema�Language�VAR$[Theorema�Knowledge�VAR$i$TM]]]]]], "1"]

2. Theoretical Background 17

Figure 2.4: A global declaration in Theorema with three di�erent terms.

• Think of the Architecture, Not the Code
• Use Source Control
• Write Documentation
There are also WL-specific advantages in Software Engineering, explored in [8, Take

Advantage of the Wolfram Language].

2.2.1 Modularity with Packages
In WL, Package development [41], namespace management [38], and further scoping
constructs [46] are interrelated and form the extensibility of the system: A typical Wol-
fram Language package is a .wl or .m file that contains a collection of functions and
variables. These packages are structured in a way that separates the implementation
from the interface, often using BeginPackage[] [15] and EndPackage[] [15] to define the
public interface and Begin[] [3] and End[] [14] for the implementation section.

Contexts are used to manage namespaces [38] , preventing name collisions between
di�erent packages or within di�erent parts of the same package. By convention, package
names serve as contexts, which helps in organizing the functions and variables and
avoiding naming conflicts. Packages in the Wolfram Language use Get[] (<<) [23] for
loading, which executes the package code, e�ectively defining the functions and variables
in the specified context. (Needs[] is the alternative, only loading loading the package if
the specified context is not already in $Packages, the relevant context variable in this
case. [39])

2.2.2 Theorema as an Extensible Mathematica Package
Theorema can be loaded like any WL-package but is really a collection of Wolfram
Language packages, see 2.5 - the proposed format of the functionality implemented with
this project is therefore also a WL-package, a file with file ending “.wl” (current) or “.m”
(historically) and following the layout given by this Theorema template file (“Theorema
/PackageTemplate.m” [56]) - including the copyright statement, which bakes the GNU
(a recursive acronym, “”GNU’s Not Unix:“ The GNU Project was initiated by Richard
Stallman in 1983 and is a free software, mass collaboration project [52]) licensing in right

2. Theoretical Background 18

at the point of extensibility and states that anyone is free to redistribute and/or modify
the software under the terms of the GPL (General Public License). [51] (However, the
software is provided without any warranty.)

Theorema

Computation

Documentation

English

FrontEnd

Interface

Kernel

Knowledge

Language

Provers

System

Figure 2.5: Directory Structure of the main directory in the Theorema project; directo-
ries are filled with .m-Mathematica/WL package files.

2.3 Paradigms: The Project-Perspective on the Multi-Paradigm
Approach in Wolfram Language

WL supports multiple programming paradigms, including the procedural one: ”The
Wolfram Language supports all standard procedural programming constructs, but often
extends them through integration into its more general symbolic programming environ-
ment.“ [43] While not a pure OOP (Object Oriented Programming) language, WL can
mimic OOP concepts through associative arrays (Associations) and symbolic structures,
as outlined in Section 1.1.2.

2.3.1 Functional vs Procedural Programming in Wolfram Language, and the
High-Level Programming Paradigm

Functional programming in WL is introduced in the Wolfram Research documentation
center as well [21], and exploring this in the context of high level programming is par-
ticularly fruitful, since the the combination of abstracted functionality with functional
approaches can make for readable code. The present author would like to reference his
exposé D of the topic of contrasting these programming styles as they are applied to

2. Theoretical Background 19

one particular example, Program 2.3 and move on to the rule-based approach most rel-
evant for the project at hand, after citing the seamless conversion of geometric objects
to Unity (the game engine [45]) objects just one example of the high-level, abstracted
idea of providing functionality in the WL ecosystem:

Drawing on its algorithmic power, Version 12 provides high–level functions
that are uniquely easy to use to create and manipulate Unity objects. Easily
create game objects with CreateUnityGameObject and directly include geospa-
tial and socioeconomic data, and across thousands of domains. [26]

Figure 2.6: Plots, graphics, and geometric objects are automatically converted to Unity’s
mesh format during the creation of a game object.[26]

Curated knowledge (data packages) available directly inside the WL system comple-
ment this paradigm-combination, as is made apparent in this example - see also Figure
2.6.

2.3.2 Symbolic Expressions Lead to Rule-Based Programming and Pattern
Matching Approaches

2.3.3 Rule-Based Programming
Another prominent mathematical research institute in Linz works with Mathematica
[53], extending its rule-based programming capacity in the flLog package [33] - much like
Buchberger, Marin and Piroi identify Mathematica as a powerful system implementing
the paradigm they are interested in, rule-based programming, the more general one

2. Theoretical Background 20

Program 2.3: These functions extract a tree data structure in the form of certain integer
mathematical proof IDs and the related children IDs from a grid expression in WL and
serve well to illustrate lists and replacements, functional and rule-based programming,
as well as recursion, for e�cient implementations. An expose with details is part of the
appendix in the present work. D

1 proofID[Grid[{___,{ID,id_},___},___]]:=id;
2 subproofs[
3 Grid[{___, {Proofs, OpenerView[{Arguments, Column[subproofs_, ___]}, ___]}, ___},
4 ___]] := subproofs; subproofs[proof_] := {};
5 getLeanTree[proof_] := Tree[proofID[proof], getLeanTree /@ subproofs[proof],

TreeElementLabelStyle All Directive[White, 16, FontFamily "Times New Roman"],
TreeElementStyle All Directive[EdgeForm[Black], RGBColor["#B6094A"]]]

as compared to (term) rewriting: While both concepts rely on rules, term rewriting
is a specific type of rule-based operation focused on the transformation of expressions,
whereas rule-based programming is a broader paradigm that can dictate various aspects
of a program’s behavior based on predefined logical rules.

This project’s goals make the rule-based programming paradigm clearer. The au-
thor’s outline the features lacking in Mathematica in terms of rule-based programming:

1. The possibility to program compositions of reductions, alternative choices,
reflexive-transitive closures, etc.

2. A built-in search mechanism to decide the existence of derivations
Expr1 ærr Expr2, where Expr1, Expr2 are given expression schemata
(patterns), and ærr is a specification of a sequence of rule reduction
steps. Typically, the specification of ærr is built with the operators
mentioned before (composition, choices, etc.)

3. The possibility to generate proofs which justify the existence or non-
existence of such reduction derivations.

[33]

To address these shortcomings, they simply implement a package to extend Mathe-
matica according to their needs, achieving the following and demonstrating the flexibility
of the system in this way.

1. Concise means to express the basic computational steps of an intended
rule application as basic rules. These features are inherited from Math-
ematica, whose computational engine is based on a higher-order rewrite
logic and with advanced support for symbolic and numeric computing.

2. Programming constructs, such as conditional basic rules and rule com-
binators, which make it possible to structure large specifications of
rules.

3. Built-in search mechanism to answer queries of the form ÷{R1, ..., Rk}Expr1 ær

Expr2 where Expr1 is a ground expression, r is the identifier of a
rule, and Expr2 is a Mathematica pattern whose variables are named
R1, . . . , Rk (see Section 2.2) [of [33]].

2. Theoretical Background 21

4. Support for generating proof objects, i.e., certificates that justify the
correctness of the answer provided by flLog to a query.

5. Visualization tools for proof objects, which enable the analysis of the
deduction derivations of flLog in a natural language formulation and at
various levels of detail.

[33]

In both contexts, symbolic expressions are not just passive data; they are actively
transformed or evaluated as part of the computational process. These expressions pro-
vide a versatile and powerful means to represent and manipulate knowledge, logic, and
computations in a way that is abstracted from the specific details of the underlying
data, allowing for more generalized and flexible rule application and system behavior.

2.3.4 Rule-Based Programming vs Rewriting, via Pattern Matching
Rule-based programming focuses on defining rules that guide the transformation of
expressions within a program. It is declarative, meaning it specifies what should be
done rather than how to do it. Rules are applied to expressions iteratively until no
further rules can be applied or until a certain condition is met.

Pattern matching is a technique often used within rule-based programming but is
more specifically focused on identifying parts of an expression that match a certain
form. Pattern matching is integral to the process of identifying where and how rules
should be applied in rule-based programming. Not all pattern matching is necessarily
linked to rule-based programming.

Rewriting, while similar to rule-based programming, is a specific subset focused on
the transformation of expressions through specific rules. It operates under the paradigm
of applying these rules to achieve a specific form or outcome. Rewriting is a more
specialized operation compared to the broader scope of rule-based programming.

Key Di�erences

• Scope: Rule-based programming can encompass various aspects of program be-
havior dictated by rules, whereas rewriting is a particular technique within this
broader paradigm.

• Focus: Rule-based programming is concerned with defining transformations (the
what), while pattern matching focuses on identifying parts of an expression that
need transformation (the identification).

• Application: Pattern matching serves the rule-based programming paradigm by
identifying where rules apply, while rule-based programming defines what trans-
formations to apply.

Integration

In the context of Wolfram Language and systems like Theorema, rule-based program-
ming and pattern matching are core tools used to process and transform symbolic ex-
pressions. The interplay of these techniques allows for flexible and powerful manipulation

2. Theoretical Background 22

of expressions, crucial for this project’s task of converting mathematical expressions into
LATEX.

Chapter 3

Concept: Package Design, Theorema
Integration, TeXForm Consideration – In
Any Case Pattern-Matching-Based
Expression Processing

Having already taken a broad conceptual introductory approach and weighed the rele-
vant theory, it should be e�cient to derive the concept for a program package dealing
with transformation of the notebook format to LATEXat this point: The aim is to apply
the strengths of WL as a programming language as directly as possible.

3.1 Conceptual Cornerstones for this Project

3.1.1 WL-Native Approach for Direct Integration with Theorema
The design for the package is such that it is intended to be integrated with the Theorema
project as a stand-alone package. Figure 3.1 illustrates the relationship of this package
to Theorema (Language) and Wolfram Language, as a whole.

The package itself is designed to follow the logic illustrated in Figure 3.2: files in-
volved are colored green, code blue, transformation logic red - these are all the subject
of this chapter.

This setup lends itself to an approach where the LATEX-template is used for cus-
tomizations, at output: the template is filled by the LATEXgenerated by transforming
the relevant Theorema Language formulas, particularly, but the Wolfram Language
notebook as a whole, generally.

3.1.2 Existing (Kernel) Functionality: Source Code Deep-Dive
The kernel sits at the core of the WL system (in keeping with the term in operating
systems) and is available as a stand-alone program as well: ”A standalone kernel session
normally reads input from a device (typically a keyboard or a WSTP [81] connection),
evaluates the expression and prints the result to a device (typically a screen or a WSTP

23

3. Concept 24

Figure 3.1

connection).“ [79] Therefor the kernel needs to contain the main functionality expected
for the WL system (independently of the notebook environment). From a software
development standpoint, the kernel repository is the place to find the implementation
for any essential function that a package outside of the kernel might rely on.

For this project, the main kernel function of relevance is TeXForm, which takes a
WL expression and transforms it to its typesetting correlate in LATEX. Looking directly
at the implementation reveals that the expedient way to handle this transformation is to
exhaustively list and maintain the transformation rules in the form of a WL association.
In order, the following categories (with one example each) make up most of the currently
about 2000 lines of code inside the TeXForm package.

3. Concept 25

Figure 3.2

Variable Category of Symbol Replacement Rule Example
$GreekLetters Greek Letters "\[Alpha]" -> "\\alpha "

$CaligraphicLetters Caligraphy "\[ScriptA]" -> "\\mathit{a}"

$GothicLetters Gothic "\[GothicA]" -> "\\mathfrak{a}"

$DoubleStruckLetters Double-struck/Emphasis "\[DoubleStruckA]" -> "\\mathbf{a}"

$AccentedLetters Accented Letters "\[AGrave]" -> "\\text{\\ a}"

$MiscellaneousSymbols Miscellaneous Symbols "\[ConstantC]" -> "c"

$Shapes Shapes "\[FilledSquare]" -> "\\blacksquare"

$TextualForms Special Characters "\[DotlessI]" -> "\\text{\\i}"

$Operators Operators "\[Times]" -> "\\times"

$RelationSymbols Symbols for Various Relations "\[NotEqual]" -> "\\neq"

$Arrows Arrow-Symbols "\[LeftArrow]" -> "\\leftarrow"

$Spaces Space-Characters "\[ThickSpace]" -> "\\thickspace"

$Others Other (Mathematical) Symbols "\[Conjugate]" -> "*"

$LeftTeXDelimiterReplacements Left Delimiters "(" -> {"("}

$RightTeXDelimiterReplacements Right Delimiters ")" -> {")"}

$TeXDelimiterReplacements LATEX-Delimiters "\\" -> {"\\backslash "}

$BasicEscapes Escaped Characters "#" -> "\\#"

$ASCIIUnchanged ASCII characters Function

This tabulation gives an idea of the type of transformations that would need to

3. Concept 26

occur and implies for this project: while a mapping of a Theorema Language to WL
expressions is possible in some cases (in fact a straightforward task in cases where the
transformation is removing the su�x $TM and if needed, the full context with Theorema
reference), any Theorema-to-LATEXtransformation would be limited to symbols available
in WL, negating the need and use of Theorema Language. Specific as-is output using
notebook-level LATEX-transformation via file-export was already shown to be lacking in
section 1.2.2.

Further, the pattern-matching-based parseNbContent allows for exactly the parts of
the notebook of interest to the relevant user group, making the overall idea for the
project a bespoke Theorema-TeXForm at notebook-level, in terms of existing WL-
functionality, sitting neatly somewhere between a solution that solves expression-level
TeX-transformation and notebook-level export.

As far as WL-TeXForm is concerned, all replacements are grouped together in an
exhaustive list of replacements:

$TeXReplacements = Join[
$ASCIIUnchanged, $BasicEscapes, $TeXDelimiterReplacements,
$GreekLetters, (*$GreekWords,*) $AccentedLetters, $Spaces,
$CaligraphicLetters, $GothicLetters, $DoubleStruckLetters,
$MiscellaneousSymbols, $Shapes, $TextualForms,
$Operators, $RelationSymbols, $Arrows, $Others

]

These TeXReplacements inform the actual parsing in TeXForm. As has been argued
already, TeXForm needs to be expanded in some way to permit Theorema-language
parsing. Now a problem arises, however, because it is not as straightforward as a simple
case-by-case switching between TeXForm and TheoremaTeXForm, say.

The (closed) source code for the Kernel would need to be opened to intertwine
Theorema-specific functionality with TeXForm-functionality. This is illustrated by the
fact that TexForm needs the complete expression to operate on successfully (maintaining
correct nesting) and would not be useful called on an independent part (at any level
in the expression hierarchy) individually: so TeXForm[And[Or[a,b], Or[c,d]]] would yield
(a\\lor b)\\land (c\\lor d) natively, but called on the Theorema-language correlate at
the outer level, that is ExpressionToTeX[And$TM[Or[a, b], Or[c, d]]], gives \\text{And$TM
}(a\\lor b,c\\lor d): The text-rendering of unrecognized symbols is a sensible default.
Calling a Theorema-version of TeXForm on only the And$TM-expression, however, is
problematic, because the TeXForm, as implemented in texformdump.wl and provided
in the project repo, is fundamentally recursive to handle nested expressions. Without
access to the way the operative recursive function (MakeTeX as it turns out) is called, a
native-only TeXForm-solution would not work to handle Theorema language expressions
in the proposed method.

The MakeTeX/makeTeX distinction is significant because it realizes the separation
between the caller package and Texformdump�, the package. makeTeX is the driver of
the recursion-parsing, but calls MakeTeX in turn, which is only defined exactly once
inside this base package, suggesting its usage to the user, the caller package:

(* Only built-in rule *)

3. Concept 27

MakeTeX[boxes_] := maketex[boxes]

Any overloading of MakeTeX overrides all corresponding maketex rules, so while it is
important that maketex recursively calls MakeTeX, not maketex, maketex is doing the
heavy lifting, and MakeTeX allows the user to override definitions at any expression level.
MakeTeX-rules can also be defined inside the caller package in this way and it is by this
mechanism that this project realizes the TeXForm-customization, building functionality
into the natively used transformation rules and defaulting to this as needed, in the case
of no special Theorema transformation rules targeting the corresponding LaTeX.

The process hinges on the functions MapTeX, the list-input version of MakeTeX -

MapTeX[stuff_List] := Map[MakeTeX, stuff]
MapTeX[stuff___] := MapTeX[{stuff}]

- as well as some auxiliary logic informing the central set of makeTeX functions
making up the last quarter of the TeXForm implementation. The first makeTeX, for
example, is:

maketex[RowBox[{l___, lb:DelimiterPattern, mid___, rb:DelimiterPattern, r___}]] :=
Module[{delimQ},

DebugPrint["------------------------------------"];
DebugPrint["maketex[RowBox[{l___, lb:DelimiterPattern,

mid___, rb:DelimiterPattern, r___}]]"];
DebugPrint["l: ", l];
DebugPrint["lb: ", lb];
DebugPrint["mid: ", mid];
DebugPrint["rb: ", rb];
DebugPrint["r: ", r];
delimQ = DelimiterBoxQ[mid];
StringJoin[

MapTeX[l],
If[delimQ, InsertDelimiters["left", lb], MakeTeX[lb]],
MapTeX[mid],
If[delimQ, InsertDelimiters["right", rb], MakeTeX[rb]],
MapTeX[r]

]
]

3.1.3 Package/MakeTeX-Specification
The following specification was developed in coordination with RISC and developed
further as the project matured, especially as concerns extensibility (MakeTeX[]):

• Package Dependencies:
– Theorema (when not incorporated directly into Theorema, which is not part

of this project and subject to user intention/Theorema development plan)
– If TeXForm-approximation were to be developed further: Texformdump

3. Concept 28

• Global Variables:
– Tma2tex::$resDir

� Usage: Defines the directory for LaTeX-templates and any other re-
sources.

� Value in project repo: C:\Users\jackh\git\repository\tma2tex\res

– Tma2tex::$tmaData

� Usage: Contains the Theorema-Datastructure that holds formula-expressions
and is typically equivalent to Theorema::Common::$tmaEnv on the Theorema-
side but can be used to show the content according to Tma2Tex (as a
separate package).

� Value: Subject to notebook loaded, e.g. FirstTour.nb (gives Theorema
formula expressions, as a list, in Theorema language

• Client-Functions:
– convertToLatexDoc

� Usage: convertToLatexDoc[notebookPath] transforms a given WL
notebook (by file path) to TeX output, creating a new TeX file from
a specified resource template.

– convertToLatexAndPdfDocs

� Usage: convertToLatexAndPdfDocs[notebookPath] transforms a given
WL notebook (by file path) to PDF file as final output, with TeX file as
intermediary step, from a specified resource template.

– convertToLatexFromString

� Usage: convertToLatexFromString[nbContentString_, resourceDir_Optional:
Tma2tex::$resDir] is experimental and intended to be called from the
Cloud, simply transforming Wolfram Language String Input to TeX Out-
put (returned directly, not via file). Also uses a template, the resource
for which can be passed as the second argument.

• Lower Level Functions, provided to the user in the case of TeXForm-approximation
- this alternative approach, hinging on a MakeBoxes, a function to create a
b̈oxes̈-representation as an intermediary step, is discussed in section 3.1.5. This
approach would benefit from the following specification.

– boxesToTeX[boxes_], to transform a cell-level boxed expression
– expressionToTeX[expr_], to transform cell-level expressions (uses Make-

Boxes [68] in the background, in Texformdump-package, to then pass to
Texformdump‘boxesToTeX in the end)

– makeTex[boxes_], for adding custom box-level transformation rules
– makeTex[string_?isTmaCommand], for adding custom Theorema-command-

level typsetting instructions, in the form of a
stringTM-named LATEXcommand in tmaTemplate, e.g. \newcommand{\ForallTM}[2]{\forall_{#1} #2}
where string takes on the value Forall.

3. Concept 29

These would essentially form the head of the package - see the overall notes on pack-
age design to conclude this chapter, ?? - and all become available to the user, where it
is anticipated that mostly the higher level functions, convertToLatexDoc and convert-
ToLatexAndPdfDocs, will be of interest, and lowever level MakeTex only secondarily
for specific cell transformations as needed, or for customizations of the transformation,
and especially for users well-aquaited with the package.

3.1.4 For This Project: No Layout-Information in the LATEX
Having considered the native TeXForm implementation and its reliance on native Make-
Boxes, the approach taken here can now be appreciated in its di�erence: the core idea
is to not include layout information of the type that is provided by MakeBoxes in gen-
erating the LATEX, but to work directly with the Theorema-Formula and give the user
complete control over layout via LATEXand specifically the macros defined in-template.

A comparison will best illustrate the di�erence, first considering a Theorema formula
and the desired output, and then a native WL expression, the relevant MakeBoxes-
intermediate step, and the final TeXForm generated LATEX-output.

A Theorema formula:

Theorema�Language�Iff$TM[
Theorema�Language�And$TM[
Theorema�Language�Forall$TM[
Theorema�Language�RNG$[
Theorema�Language�SIMPRNG$[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$x$TM]]], True,

Theorema�Language�Or$TM[
Theorema�Knowledge�P$TM[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$x$TM]],

Theorema�Knowledge�Q$TM[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$x$TM]]]],

Theorema�Language�Forall$TM[
Theorema�Language�RNG$[
Theorema�Language�SIMPRNG$[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$y$TM]]], True,

Theorema�Language�Implies$TM[
Theorema�Knowledge�P$TM[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$y$TM]],

Theorema�Knowledge�Q$TM[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$y$TM]]]]],

Theorema�Language�Forall$TM[
Theorema�Language�RNG$[
Theorema�Language�SIMPRNG$[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$x$TM]]], True,

Theorema�Knowledge�Q$TM[
Theorema�Language�VAR$[Theorema�Knowledge�VAR$x$TM]]]]

The Theorema-MakeBoxes result:

3. Concept 30

FormBox[
RowBox[{

RowBox[{"(",
RowBox[{

RowBox[{
UnderscriptBox["\[ForAll]",
RowBox[{

StyleBox["x", "ExpressionVariable"]}]],
RowBox[{

RowBox[{"P", "[",
StyleBox["x", "ExpressionVariable"], "]"}], "\[Or]",

RowBox[{"Q", "[",
StyleBox["x", "ExpressionVariable"], "]"}]}]}], "\[And]",

RowBox[{
UnderscriptBox["\[ForAll]",
RowBox[{

StyleBox["y", "ExpressionVariable"]}]],
RowBox[{

RowBox[{"P", "[",
StyleBox["y", "ExpressionVariable"], "]"}], "\[Implies]",

RowBox[{"Q", "[",
StyleBox["y", "ExpressionVariable"], "]"}]}]}]}], ")"}],

"\[DoubleLeftRightArrow]",
RowBox[{

UnderscriptBox["\[ForAll]",
RowBox[{

StyleBox["x", "ExpressionVariable"]}]],
RowBox[{"Q", "[",

StyleBox["x", "ExpressionVariable"], "]"}]}]}], TheoremaForm]

Applying TeXForm (in a modified version available in the file tma2texV0.wl) would
give:

\left(\underset{x}{\forall }P[x]\lor Q[x]\land
\underset{y}{\forall }P[y]\Rightarrow Q[y]\right)\Leftrightarrow
\underset{x}{\forall }Q[x]

However, the goal (as defined by the user) actually is:

\IffTM{ \AndTM{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{x}}}}{ \OrTM{ P[
\VARTM{x}]}{ Q[\VARTM{x}]}}}{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{y}}}}{
\ImpliesTM{ P[\VARTM{y}]}{ Q[\VARTM{y}]}}}}{ \ForallTM{
\RNGTM{ \SIMPRNGTM{ \VARTM{x}}}}{ Q[\VARTM{x}]}}

That is, the formula structure should be translated directly to customizable Theorema-
specific commands, and not actually assume any layout information whatsoever, the way
TeXForm approaches the problem.

3. Concept 31

3.1.5 MakeBoxes: An Alternative Typesetting-Pipeline
Both the Theorema and the TeXForm packages provide MakeBoxes-functionality [32],
taking care of the Mathematica typesetting: underscripts, delimiters, and the like are
typesetting data that is specified in addition to formal and semantic data. This is the
reason TeXForm’s expressionToTeX actually uses boxesToTeX under the hood, by in-
tercalating a MakeBoxes-step.

For purposes of Theorema it would be paramount to use the MakeBoxes defini-
tion supplied in Theorema�Language�Syntax�applying all the relevant typsetting infor-
mation at boxes-level, taking into account various Theorema-specific information like
Theorema-standard operators, non-standard operator, quantifiers, ranges, and the like.

Such an expression can generally be used for TeXForm parsing, but the parsing
mechanism would need to be adapted to allow for customizations, a crucial part of this
project and required by the user: registering custom Theorema-LATEXcommands should
be made easy for the user, allowing for custom specification of the command in the
template.

Non-standard commands (as specified by TeXForm) would be rendered as text
(\text), signaling to the user that the command should would need to be registered
(on the Mathematica side) and specified (on the LATEXtemplate side). Conceptually,
for this implementation, this mechanism requires a symbol-level adaptation of TeX-
Form in the source: $TeXReplacements needs to be extended in the case of customiza-
tions and MakeTeX implemented to respond to Theorema-expressions dynamically, in
terms of the implementation details already discussed. At the level of the specification
makeTex[string_?isTmaCommand] allows for the required customization.

This style of approach was ultimately not chosen, rejecting layout-processing at
WL-level and delegating this to LATEXentirely, as described. (A draft implementation is
available in the project repository as a V.0 (tma2texV0.wl using texformdump.m), still,
in case of future need.)

3.2 Double Recursive Descent Through Wolfram and Theorema
Language Using Pattern Matching and Rule Based Programming

Pattern matching and rule-based programming are core aspects of WL and form the
backdrop the approach proposed in this concept outline: While they are closely related
and sometimes overlap in their applications, they serve distinct purposes in the language.
The WL engine tries to find occurrences of defined patterns within expressions. When
a match is found, various operations, such as replacement, extraction, or modification
of the matched part, can be performed.

Rule-based programming involves defining the operative rules that transform ex-
pressions in specific ways. It is a declarative programming style focusing on the what
rather than the how. Rules are applied to expressions until no more rules are applicable,
or a specified condition is met.

To disambiguate pattern matching and rule based programming further, it is helpful
to focus on scope: Pattern matching is a technique used within rule-based programming.
Rules often use patterns, but not all uses of patterns are in the context of rule-based
programming. Pattern matching is about identifying parts of expressions that fit a cer-

3. Concept 32

tain form. Rule-based programming is about defining transformations that should be
applied to expressions, potentially utilizing pattern matching to identify the parts to be
transformed. Finally, in terms of concern, pattern matching focuses on the ”identifica-
tion“ part, while rule-based programming focuses on the ”transformation“ part.

In modern WL documentation rule-based programming and pattern matching are
described as the ”core of the Wolfram Language’s symbolic programming paradigm [...]
for arbitrary symbolic patterns.“ [wolfram_research_rules_nodate]

3.2.1 Pattern Matching to Realize LATEX-Transformation of Wolfram Language
Notebook Code

Fig. 3.3 illustrates the two descents occurring in this project high-level, along with cen-
tral functions and their overloaded counterparts in the code doing the pattern matching.
The result is the LATEXcode far right on bottom in the graphic, with both document
and formula level output.

Figure 3.3

Section 4.3 in the following chapter elaborates on the specificity rules crucial to
the call order. Recursion is simple to see at this point: by adding a call to the same
function on the right hand side of the rule, the rule becomes recursive. The core idea of
this implementation is the fashioning of many rules that are applied according to the
relevant Theorema Notebook pattern, called recursively and descended in the sense that
we move from outer expression to inner-most. Indeed, we start from calling the relevant
function, parseNotebookContent in the form parseNotebookContent[Notebook[l_List, ___
]], that is, on the entire Notebook expression that represents a Mathematica notebook.

3. Concept 33

The same idea is applied twice, to two sets of patterns: once for general text and
WL notebook expression syntax, and once for the more specific syntax specified by the
Theorema Language. Hence it makes sense to speak of a double-recursion, or a double-
descent, in this implementation. Theorema Language is rendered distinctively in the
final LATEX/PDF output, to mark this distinction outwardly.

3.2.2 Pattern Matching to Realize LATEX-Transformation of the Theorema
Language Data Structure

This subsection expands on the notion of the horizontal program dimension, after
the live version of the current Theorema formula under consideration (being parsed)
has been obtained, via getTmaData[]: now the goal is to generate a TeX-snippet like
\IffTM{ \AndTM{ \ForallTM{ ... with appropriate closing brackets from a formula

like Theorema�Language�Iff$TM[Theorema�Language�And$TM[Theorema�Language�Forall$TM[....
The easy su�x ”TM“ is chosen for the LATEXoutput, the ”$TM“ visible in the Theorema
Language code is the original way of keeping separate contexts. In this way Theorema
may specify its own ”I�“, ”And“, ”Forall“ etc., both in notebooks and the LATEXresult
of this project.

Roughly, there is a Predicate Logic distinction between operator symbols known
to the language, marked by the word ”Language“ in the symbol name context, and
knowledge outside of the language, functions and predicates with the word ”Knowl-
edge“ in their context path. [65] The parsing needs to result in square brackets for the
”Knowledge“-symbols, and macro-syntax curly braces for the ”Language“-symbols, with
appropriate parameter placement. These macros, or commands, are then fully defined
inside the LATEX-template file.

3.3 Extensibility in Both LATEXand Wolfram Language

3.3.1 A Note on Evaluation Criteria and Stability
The execution of the idea can be evaluated in terms of two core criteria. First, stability
is a key criterion for this work and actually bases on generality of the patterns selected:
WL and Theorema expression patters that will stand the test of time need to be selected
at the development stage, and testing must include a diverse current range of Theorema
notebooks.

3.3.2 WL-Messages and -Tests: Software Design Goals
WL provides modern engineering-oriented functionality for both tests and error-handling,
in the form of messages [70] - the mechanism is part of this package such as in the case
the file has not been loaded completely to provide the required formula data, see Figure
3.4.

Testing will make up a large part of Chapter 5.

3. Concept 34

Figure 3.4: The basic idea is that every message has a definite name, of the form
symbol::tag. [75]

3.3.3 Extensibility
Extensibility at both the WL and LATEXlevels is the other priority, with the understand-
ing that Theorema Language might change, Wolfram Language might be updated, and
additional LATEXcommands or alternative rendering imperatives might be required.

The main extension points go as follows, where the sectioning of the code follows
the final version submitted with this thesis for easier finding of the relevant code. At
the WL-level:

• Package Parts 1.B and 1.C, where B covers the first recursive descent through the
overall notebook structure and C the second descent into the Theorema-formula:

• formatTmaData (1.C.3): wrapper function around the Formula-LATEX-output that
maybe used for string replacements, for instance, at the level of the formula-
LATEXsnippets.

• Client-Functionality (Part 3): both top level functions convertToLatexDoc and
convertToLatexAndPdfDocs may be edited easily to suit the needs of higher-level
project, while more rigid configuration details are hidden away in Part 2, especially
as concerns filehandling details.

• Overall Package: This project was developed as a package ẗma2texb̈ut the code
Parts 1 - 3 can easily be moved to another package, as long as Theorema, the
overall package, is in some way available, and the global variables Tma2tex�\$resDir
and Tma2tex�\$tmaData are readied.

The main extension procedure on the level of LATEXis to add macro-definitions in
the template provided in Tma2tex�\$resDir, in a file called tmaTemplate.tex in the default
configuration. A sample set of macros is provided for reference in sampleTemplateMacros.
tex.

Chapter 4

Implementation, Wolfram Language
Programming Paradigms and Guidelines,
Integration and Deployment/Cloud

4.1 Overview of the Implementation
The implementation followed the specification introduced in Section 3.1.3, forgoing the
approach reliant on TeXForm explored at concept stage, for a simpler, direct translation
mechanism, detailed in this chapter. The package specification looks like this at a high
level and at the time of completing of the project:

• Package Dependencies:
– Theorema

• (Package-public) Global Variables/User Settings: The dollar sign is in keeping
with the Theorema (and other package) convention for global variables.

– $resDir: expects a file tmaTemplate.tex, and any other resources should be
added here to.

– $tmaData: set to the value of Theorema�Common�$tmaEnv, callable to make back-
ground data visible to the user at any time.

• Client-Functions: the camelcase (rathern than Pascal-case) is to distinguish the
function name from WL-internal function names.

– convertToLatexDoc, input: a Theorema notebook/output: a .tex-file in the
current directory/option: DocumentProcessingLevel goes to empty string,
None or Full.

– convertToLatexAndPdfDocs: a Theorema notebook/outputs: a .tex-file and
a .pdf file in the current directory/option: DocumentProcessingLevel goes to
empty string, None or Full.

35

4. Implementation 36

4.1.1 Note on Modular Programming in Wolfram Language
[This is related, probably: Building large software systems with Wolfram Language. See
Concepts section. CompoundExpression [12], Module [37], ... Block? [5]]

Concretely for this package, in standalone form, the package loads Theorema via a
Needs[] call: if the package were to be integrated to Theorema directly in future work,
Theorema functionality would either be available directly or loaded in a more directed
fashion in the form of relevant sub-packages.

4.1.2 Overall Structure of the Package
For organization of the code the following hierarchy and division of concerns was followed
throughout, to make analysis of this academic project more structured

• Part 0: Setup - global variables and the like.
– Part 0.A: Public Package Variables: Tma2tex\�\$resDir, set by the user

in the Package Header, and Tma2tex\�\$tmaData, set to Theorema�Common�$tmaEnv
initially.

– Part 0.B: Private Package Variables like Tma2tex�$documentProcessingLevel
and tmaDataAssoc, concerned with holding further settings and formats of the

data.
• Part 1: Parsing with parseNbContent, getTmaData, parseTmaData: the

main recursive functionality, with the following subdivisions.
– Part 1.A: parseNbContent - in this section, the concern is appropriate pre-

sentation of the output of a notebook parsing run.
– Part 1.B: parseNbContent at higher level, concerned with bridging to

the Theorema Language.
– Part 1.C: getTmaData/parseTmaData, concerned with processing the The-

orema Language.
• Part 2: Filehandling
• Part 3: Client Functions

4.2 High Level Programming in Practice
In high-level programming within WL, the focus is primarily on manipulating symbolic
expressions and applying transformation rules rather than managing low-level imple-
mentation details. This abstraction layer allows developers to craft powerful programs
with minimal code, leveraging the language’s built-in functions for data manipulation,
pattern matching, and rule-based transformations. [Ref.]

The Wolfram Language o�ers several key features that support high-level program-
ming, as seen in both filehandling and the client functions in this project:

• Symbolic Computation: All expressions in the Wolfram Language are treated
symbolically, allowing functions to operate on concrete data, as well as symbolic
representations of mathematical expressions, code, or documents.

4. Implementation 37

• Pattern Matching and Transformation Rules: Advanced pattern matching
capabilities facilitate the definition of rules for transforming expressions, simpli-
fying the implementation of complex algorithms in a clear and concise manner.

• Functional Programming Constructs: Functions such as Map, Apply, and
Fold support a functional programming style, enabling operations on lists and
other data structures without explicit loops.

• Built-In Algorithms and Computational Knowledge: The language inte-
grates a vast repository of algorithms for numerical computation, algebra, statis-
tics, and other domains, alongside access to curated data, allowing for the reso-
lution of problems at a high level without the need to develop standard methods
from scratch.

• Notebook Interface: The Wolfram Language is often used within interactive
notebooks, providing a rich environment for computation, visualization, and dy-
namic document creation. This interface enhances the development process by
o�ering immediate feedback and facilitating exploratory programming.

[Ref.]
By leveraging these features, developers can write programs that are not only more

concise and readable but also easier to maintain and adapt, emphasizing the core logic
of their applications rather than low-level programming concerns.

4.2.1 Client Functions
The main client function in this package, relying heavily on high level programming,
is convertToLatexDoc. This function is responsible for converting a given Theorema
notebook to a LaTeX document. The function takes a notebook path and optional
settings for the document processing level. It retrieves the notebook content, parses it,
and fills a LaTeX template with the extracted data such as the title, author, and date.
The function then exports the filled content to a .tex file.

This function is also called by convertToLatexAndPdfDocs, which extends its func-
tionality by converting the LaTeX file to a PDF. After calling convertToLatexDoc, it
checks for successful conversion and then uses the pdflatex command to compile the
LaTeX file into a PDF document.

These two functions, convertToLatexDoc and convertToLatexAndPdfDocs, are the
core client functions intended to be called by Theorema, the user. They encapsulate
the primary operations necessary for converting Theorema notebooks into LaTeX and
PDF documents, providing a seamless integration with the Theorema environment for
document processing.

Options[convertToLatexDoc] = {DocumentProcessingLevel -> ""};
convertToLatexDoc[notebookPath_, OptionsPattern[]] := Module[{nb, content,

latexPath, latexTemplatePath, resourceDir = $resDir, texResult, sownData,
filledContent, closeFlag = False, documentProcessingLevel},

If[Length[$tmaData] == 0,
Message[tmaDataImport::empty, "The Theorema-Formula-Datastructure is empty.
Did you evaluate a Theorema notebook before loading the package and calling

the conversion function?"];

4. Implementation 38

Return[$Failed]
];

documentProcessingLevel = OptionValue[DocumentProcessingLevel];
If[documentContentProcessingLevel =!= "",

SetDocumentProcessingLevel[documentProcessingLevel]
];

nb = If[isNotebookOpen[notebookPath],
NotebookOpen[notebookPath],
NotebookOpen[notebookPath, Visible->False]; closeFlag = True];

content = NotebookGet[nb];
NotebookEvaluate[content];
latexPath = getLatexPath[notebookPath];
latexTemplatePath = getLatexTemplatePath[notebookPath];

{texResult, sownData} = Reap[parseNbContent[content], {"title", "author", "date"}];
filledContent = fillLatexTemplate[resourceDir,

<|
"nbContent" -> texResult,
"nbTitle" -> First[sownData[[1, 1]]],
"nbAuthor" -> First[sownData[[2, 1]]],
"nbDate" -> First[sownData[[3, 1]]]

|>];
Export[latexPath, filledContent, "Text"];
If[closeFlag === True, NotebookClose[notebookPath]];

]

Options[convertToLatexAndPdfDocs] = {DocumentProcessingLevel -> ""};
convertToLatexAndPdfDocs[notebookPath_, OptionsPattern[]] := Module[{latexPath,

pdfPath, compileCmd, conversionResult},
conversionResult = convertToLatexDoc[notebookPath,

DocumentProcessingLevel->OptionValue[DocumentProcessingLevel]];
If[conversionResult === $Failed,

Return[$Failed]
];
latexPath = getLatexPath[notebookPath];
pdfPath = StringReplace[latexPath, ".tex" -> ".pdf"];
compileCmd =
"pdflatex -interaction=nonstopmode -output-directory=" <>
DirectoryName[latexPath] <> " " <> latexPath;

RunProcess[{"cmd", "/c", compileCmd}];
]

4. Implementation 39

4.2.2 File-handling and LATEXDetails
Key Functionalities: The primary functionalities of the file-handling code can be sum-
marized as follows:

• Writing to LaTeX Files: The function writeToLatexDoc is responsible for
writing the parsed content of a Theorema notebook to a new LaTeX file. This
function opens a file stream using the provided path (latexPath), writes the
parsed content (nbContent) to it, and then closes the stream. This process ensures
that the data is e�ciently transferred from the internal representation to a format
suitable for LaTeX processing.

• Generating LaTeX File Paths: The function getLatexPath constructs the full
path for the new LaTeX file by appending the .tex extension to the base name
of the original Theorema notebook file. This method ensures that the LaTeX file
is stored in the same directory as the source notebook, maintaining a logical and
consistent file organization.

• Locating LaTeX Templates: The function getLatexTemplatePath similarly
constructs the path for a LaTeX template file. This template file serves as a wrap-
per or framework for the main content LaTeX file, ensuring proper formatting and
structure in the final output.

• Filling the LaTeX Template: The function fillLatexTemplate handles the
process of importing a predefined LaTeX template (tmaTemplate.tex) from the
specified directory and dynamically filling it with content from an association
(data). This template-based approach allows for the flexible customization of the
LaTeX document according to di�erent requirements or styles.

Directory Structure and File Organization: The implementation works with a well-defined
directory structure where the following components are needed:

• Notebook Directory: The primary directory where the original Theorema note-
book files are located. The LaTeX files generated by getLatexPath and getLatexTemplatePath
are stored in the same directory, preserving the association between the source
notebooks and their corresponding LaTeX outputs.

• Template Directory: A subdirectory containing the LaTeX template file (tmaTemplate.tex).
This template is imported by the fillLatexTemplate function and filled with con-
tent to create a complete LaTeX document. The template file is assumed to be
reusable across multiple notebook conversions, providing a consistent document
structure.

• Resulting Files: The resulting files from this process include:
– A LaTeX content file named according to the original notebook (.tex exten-

sion).
– The final PDF document generated from the filled LaTeX template, if calling

the appropriate client function.

4. Implementation 40

4.3 Implementation of (Double) Recursive Descent with Pattern
Matching

4.3.1 General Remarks on Pattern Matching, and Execution Order, in Wolfram
Language

There are various nuances when it comes to pattern matching in Wolfram Language.
One example is this rendering of a ”DisplayFormula,“ that is, a formula written closely
to frontend rendering (box structure first, rather than formula first), without Wolfram
or Theorema Language logic in mind.

Notebook WL code is given by the following code snippet, illustrating the front-end-
orientation of the code.

{Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"(",
RowBox[{
UnderscriptBox["\\[ForAll]", "x"],
RowBox[{"(",
RowBox[{
RowBox[{"P", "[", "x", "]"}], "\\[Or]",
RowBox[{"Q", "[", "x", "]"}]}], ")"}]}], ")"}], "\\[And]",

... }]},
TraditionalForm]], "DisplayFormula", ...

CellID->2121253064,ExpressionUUID->"384e1c8f-1530-48b6-9503-bea644c47327"],
...}

The functions BoxData, FormBox, RowBox and UnderscriptBox take care of mini-
mal formatting required for a readable rendering.

These expressions can be parsed recursively with the following WL code to test
execution order.

parseNbContent[l_List] := If[$documentProcessingLevel == "Full",
"\\colordiamond{blue}", ""]

parseNbContent[l_List] /; MemberQ[l, _Cell] :=
StringJoin[If[$documentProcessingLevel == "Full",

"\\colordiamond{purple}", ""], ToString /@ parseNbContent /@ l]
...
parseNbContent[Cell[BoxData[FormBox[content_,

TraditionalForm]], "DisplayFormula", ___]] :=
If[$documentProcessingLevel != "None", StringJoin["\\begin{center}",

parseNbContent[content], "\\end{center}\n"], ""]

While the latter pattern is highly specific, there is only a small di�erence (involving
a condition) between the first two rules, concerned with parsing lists, like the one in the
previous example, marked by curly braces.

4. Implementation 41

When multiple rules are applicable to a given expression, WL uses specificity to
determine which rule to apply. The specificity rule in pattern matching operates on the
principle that more specific patterns are chosen over more general ones when multiple
patterns match an expression. Here’s how specificity is determined in WL:

• Literal Patterns Over Pattern Objects: A pattern that exactly matches an expres-
sion is considered more specific than a pattern involving pattern objects (like _,
__, ___, or named patterns using _type, etc.). For example, a rule for f[1] is more
specific than a rule for f[x_].

• Constrained Patterns Over Unconstrained: Patterns with conditions (/;) or pat-
tern tests are more specific than those without. For example, f[x_ /; x > 0] is
more specific than f[x_].

• Constrained Patterns Over Unconstrained: Patterns with conditions (/;) or pat-
tern tests are more specific than those without. For example, f[x_ /; x > 0] is
more specific than f[x_].

• Length and Structure: Patterns that match expressions with more specific struc-
ture or length are preferred. For example, f[{x_, y_}] is more specific than f[_List],
and f[x_, y_] is more specific than f[___].

• Head Specificity: Patterns specifying a head are more specific than patterns with-
out a head specification. For example, f[x_Integer] is more specific than f[x_].

• Order of Definition: When patterns have the same specificity, the rule that was
defined first is chosen. This is relevant for user-defined rules where the specificity
might appear equal.

• Nested Patterns: In nested patterns, specificity is considered at each level of nest-
ing. A pattern that is more specific at any level of nesting is considered more
specific overall.

[Ref.]

4.3.2 Limited Approach of Specific Pattern Matching Rules
Part 1.A in the code defines patterns as basic cell structures to extract certain informa-
tion, as in this case:

(* -- Part 1.A.1 -- Text Expressions (at the Cell Level):
Not processed if DocumentProcessingLevel = "None", otherwise yes. *)

parseNbContent[Cell[text_String, "Text", ___]] :=
If[$documentProcessingLevel != "None", "\\begingroup \\section*{} "

<> text <> "\\endgroup \n\n", ""]
parseNbContent[Cell[text_String, "Section", ___]] :=

If[$documentProcessingLevel != "None", "\\section{"
<> text <> "}\n\n", ""]

There are also rules for front-end displayed formulas used in the main text, to display
the main content relevant for the reader:

parseNbContent[UnderscriptBox["\[Exists]", cond_]] :=
If[$documentProcessingLevel != "None",

4. Implementation 42

"\\underset{" <> parseNbContent[cond] <> "}{\\exists}", ""]
parseNbContent[UnderscriptBox["\[ForAll]", cond_]] :=

If[$documentProcessingLevel != "None",
"\\underset{" <> parseNbContent[cond] <> "}{\\forall}", ""]

To accomplish coherent recursive pattern matching as it is initiated in the preceeding
example, the patterns need to be defined down to the symbol level.

parseNbContent[RowBox[{left_, "\[And]", right_}]] :=
If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left],
" \\land ", parseNbContent[right]], ""]

parseNbContent[RowBox[{left_, "\[Or]", right_}]] :=
If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left],
" \\lor ", parseNbContent[right]], ""]

parseNbContent[RowBox[{left_, "\[DoubleLeftRightArrow]", right_}]] :=
If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left],
" \\Leftrightarrow ", parseNbContent[right]], ""]

The approach is naturally limited: foreseeing every possible symbol used in mathe-
matics, even a subset, requires an extensive set of rules, the like is implemented under
the hood in the TeXForm, as is explored in the chapter on the concept: this approach
is only implemented so far, instead making use of parseNbContent[] to essentially lo-
cate the major features like titles and sections in the Theorema notebook, and find the
appropriate jumping o� point (for parsing) into the Theorema formula.

This happens in Part 1.B: the pattern

Cell[CellGroupData[{Cell[headertext_, "EnvironmentHeader", headeroptions___],
Cell[formulaboxdata_, "FormalTextInputFormula", options___],
furtherNotebookEnvCells___},

envOptions___]]

is captured and one line in the relevant function call reads:

formatTmaData@parseTmaData[getTmaData[cellID]]

The cellID, extracted from the options in the preceeding pattern, is used to getTmaData
from the environment variable: now this is parsed in a second recursive descent (with
a slightly di�erent approach), and finally formatted as needed on string- rather than
expression-level.

4.3.3 Generalized Parsing Approach for Theorema Data
Core Parsing Function: The function parseTmaData uses pattern matching to handle
various types of expressions. The first definition,

parseTmaData[op_?isTmaLanguageSymbol[args___]] :=
Module[{nextOp, argList, parsedArgs},
nextOp = prepareSymbolName[op];

4. Implementation 43

argList = {args};
parsedArgs = Switch[

Length[argList],
1, "{" <> parseTmaData[argList[[1]]] <> "}",
2, "{" <> parseTmaData[argList[[1]]] <> "}

{" <> parseTmaData[argList[[2]]] <> "}",
3, "{" <> parseTmaData[argList[[1]]] <> "}

{" <> parseTmaData[argList[[3]]] <> "}",
_, ""

];
" \\" <> ToString[nextOp] <> parsedArgs
]

handles expressions where the operator is recognized as a language symbol using
the predicate isTmaLanguageSymbol. The function utilizes a Module to locally define
variables and processes the arguments using a Switch statement, which handles di�erent
numbers of arguments. The main thing here: this covers the Theorema Language case
of an epxression that needs to be converted to something like

\RNGTM{ \SIMPRNGTM{ \VARTM{a}}}

for example: The ranges and variable expressions are transformed to parameterizable
LATEXmacros that can be defined exactly the way the user wishes, LATEX-side: it is a
generalized approach.

Alternative Parsing Cases: Several alternative cases are defined to handle di�erent types
of expressions:

• Non-Language Operators: The second alternative matches expressions where
the operator is not a recognized language symbol:

parseTmaData[op_[args___]] :=
Module[{nextOp, argList, parsedArgs},
nextOp = prepareSymbolName[op];
argList = {args};
parsedArgs = Switch[

Length[argList],
1, "[" <> parseTmaData[argList[[1]]] <> "]",
2, "[" <> parseTmaData[argList[[1]]] <> ", "

<> parseTmaData[argList[[2]]] <> "]",
_, ""

];
" " <> ToString[nextOp] <> parsedArgs
]

This alternative similarly handles the parsing, but formats the output using square
brackets instead of curly braces, reflecting a di�erent LaTeX macro style reserved

4. Implementation 44

for predicate expressions like P[x], for example. This is considered Theorema
Knowledge and marked as such in the typical context paths found in Theorema
language expressions.

• Special Two-Argument Sets: Another special case handles expressions where
two sets of arguments are present:

parseTmaData[op_?isTmaLanguageSymbol[args___][args2___]] :=
Module[{nextOp, argList, argList2, parsedArgs, parsedArgs2},
nextOp = prepareSymbolName[op];
argList = {args};
parsedArgs = Switch[...];
argList2 = {args2};
parsedArgs2 = Switch[...];

" \\" <> ToString[nextOp] <> parsedArgs <> parsedArgs2
]

Here, the function handles two levels of arguments, which are independently parsed
and concatenated.

• Literal Numbers and Terminal Expressions: Additional cases handle literal
integers and terminal expressions that do not require further parsing:

parseTmaData[i_Integer] := ToString[i]

parseTmaData[ax_] := prepareSymbolName[ax]

These cases ensure that numbers and final symbolic expressions are converted
directly to their string representations or appropriately prepared names.

Auxiliary Functions: Two auxiliary functions, isTmaLanguageSymbol and prepareSymbolName,
are defined to assist with parsing:

isTmaLanguageSymbol[f_Symbol] :=
With[{n = SymbolName[f], c = Context[f]}, c === "Theorema�Language�"]

isTmaLanguageSymbol[f_] := False

The function isTmaLanguageSymbol determines whether a given symbol belongs to
the Theorema‘Language‘ context.

prepareSymbolName[op_Symbol] :=
With[{n = SymbolName[op]},
If[StringTake[n, -3] == "$TM",

If[StringTake[n, 4] == "VAR$", StringDrop[StringDrop[n, 4], -3],
If[isTmaLanguageSymbol[op], StringDrop[n, -3] <> "TM", StringDrop[n, -3]],

If[StringTake[n, -1] == "$", StringDrop[n, -1] <> "TM", n <> "TM"]]
]

4. Implementation 45

The prepareSymbolName function is responsible for converting Theorema symbols
into valid LaTeX macro names, ensuring that symbols conform to the required format-
ting conventions for their respective contexts.

Chapter 5

Testing, Analysis and Bench-marking;
Closing Remarks, Potential Future Work

5.1 Messages, Failures, and Testing in WL
If WL is to a be a systems engineering language, it makes sense for error cases, failures,
to be readily machine readable and conceived of as input for processing in an automated
manner, rather than messages that direct a human user of Mathematica Desktop. This
shift is apparent in the recommendation for usage of Failure[] rather than the symbol,
$Failed, simply ”a special symbol returned by certain functions when they cannot do
what they were asked to do.“ [1]

Opposite this, Failure[], introduces more functionality and information, especially
the failure type: ”Failure[“tag”,assoc] represents a failure of a type indicated by tag,
with details given by the association assoc.“ [18] This introduces the potential for an
abstract way to handle a failure based on type, programmatically, rather than a specific
directive.

A basic example of a Failure object is Failure["InvalidInput", <||>], without an
association even. Inside the Mathematica frontend it is rendered as in figure 5.1.

Figure 5.1: A simple Failure object rendered in Mathematica [18]

A more complicated example in terms of metadata and parameterized messaging is
generated by the WL code Failure["ExternalOperation", <\|”MessageTemplate“ -> ”Ex-
ternal operation ‘1‘ failed.“, ”MessageParameters“ -> ” file upload“Î >] and rendered
as in figure 5.2.

Failure can also contain index-able metadata that might be helpful for programmatic
retrieval in the failure case. [18] In any case, Failure objects can be returned by functions
to indicate that an operation did not succeed as expected. This approach allows for
more structured error handling, where the calling code can inspect the Failure object

46

5. Closing Words 47

Figure 5.2: A Failure object using a template with positional parameters [18]

to determine the cause of the error and decide how to proceed: They are particularly
useful in functional and symbolic programming patterns prevalent in WL, enabling a
more nuanced handling of errors compared to traditional imperative error handling
mechanisms like throwing exceptions.

Similarly, Message [34] is about signaling that something unusual has occurred dur-
ing the evaluation of an expression - where Failure is a way to encapsulatively represent
the occurrence of an error and carry forward information about that error in a struc-
tured form, a function might generate a Message to inform the user of an error and then
return a Failure object to programmatically indicate the error condition to the calling
code.

When a Message is generated, it does not by itself halt execution; the computation
continues unless the message is associated with an error severe enough to trigger a
termination of the evaluation. [34] Messages can be controlled and manipulated using
functions like O�, On, and Quiet, allowing to suppress or enable specific messages. This
is useful for managing the verbosity of output during computation, especially in cases
where certain warnings or errors are expected and do not necessarily indicate a critical
failure.

5.1.1 Working with Messages in WL
In WL, messages provide a mechanism for displaying errors, warnings, or other infor-
mational text to the user. A message definition typically consists of three parts:

CloudConnect::creds = "Incorrect username or password.";

The components of a message definition are:
• Message Head: The head of a message, such as CloudConnect in the example,

represents the function or symbol associated with the message. Some messages are
tied to a specific function, while others can be issued by multiple functions. For
messages that are generally applicable, the head is set to General. For example:

General::settf = "Cannot set �1� to �2�; value must be True or False."

When issuing a message with a General head, the specific function symbol that
triggers the message is still used:

...code...
Message[CloudExpression::settf, dest, expr];
...code...

5. Closing Words 48

• Message Tag: The message tag is a short, lowercase string that often uses ab-
breviations. Unlike most naming conventions in the Wolfram Language, message
tags do not use camel case or full words. The tag typically alludes to the expected
input or operation that was not received or performed correctly.

• Message Template: The template is a full sentence that provides the text to
be displayed when the message is issued. It can include template slots, which are
placeholders (such as ‘1‘ or ‘2‘) that will be replaced by data supplied to the
Message function at runtime.

By using these components, WL allows for standardized, flexible, and informative
messaging that enhances user interaction and debugging capabilities.

Usage messages, or message templates, are a way to document the purpose and
usage of symbols (typically functions) directly within the WL environment. These mes-
sages provide brief descriptions of what a function does, its arguments, and sometimes
examples of how to use it. Usage messages are helpful for both package developers and
users, as they o�er immediate, inline documentation accessible through the WL inter-
face. They are also used in the present package, see near the top of the source code in
Appendix A.

Testing in WL involves evaluation strategies that check for Messages, or Failures,
in the modern case. To this end, the language o�ers a suite of testing functionality:
for example, VerificationTest fails by default if any Message is issued (unless it is told
to expect a message, e.g. of a certain type). [78] More recently, TestCreate ([72]) and
TestEvaluate ([73]) were introduced to the language, to create and run TestObjects,
([50]) respectively.

5.1.2 Testing in the Wolfram Language
WL provides various built-in functions and tools to facilitate di�erent types of testing,
including unit tests, integration tests, and performance tests.

Key Features of Testing in WL:
• Unit Testing: WL supports unit testing through the VerificationTest function,

which allows developers to specify expected outcomes for individual functions or
code blocks. This function compares the actual output against the expected result,
making it easy to identify discrepancies.

• Test Files and Test Framework: The Wolfram Language has a dedicated test-
ing framework that supports the creation of test files. Test files can contain mul-
tiple VerificationTest expressions and are typically stored with a .wlt extension.
These test files can be run individually or as part of a suite using the RunTest
function.

• Automatic Test Evaluation: WL provides tools for automated test evaluation
and reporting. TestReport [74] generates detailed test results, including informa-
tion on passed, failed, and errored tests. This feature allows developers to quickly
assess the overall health of the codebase.

• Performance Testing: The Timing and AbsoluteTimingfunctions are used to
measure the performance of code in WL. In addition, BenchmarkReport can pro-

5. Closing Words 49

vide detailed performance analysis, comparing the execution time of di�erent func-
tions or code segments. [77]

• Continuous Integration and Testing: WL integrates well with continuous
integration (CI) systems, allowing for automated testing in a CI pipeline - using
native WL functionality and, for example, WolframScript [80] for commandline
support - though so-called Testing Notebooks provide an interface for writing and
running tests as well [78]

The Wolfram Language’s testing framework is designed to provide a robust and
flexible environment for developers to ensure the correctness and performance of their
code, making it suitable for both small scripts and large-scale projects.

5.1.3 Testing Approach for this Project
For this project, a structured and multi-layered testing approach has been adopted
to ensure the reliability and correctness of the code base, which primarily involves
converting Theorema notebooks into LaTeX and PDF documents.

By Testing Category

The focus from the start was unit testing, however - tests were added towards the end
of the project due to an evolving specification (and the work of unearthing the details
and the important questions to ask) rather than taking a test-driven approach.

Unit Tests: The core functionalities, such as parsing Theorema notebook content, gen-
erating LATEXfiles, and handling file operations, are tested in an outside view (irrespec-
tive of LATEXcode quality). These tests leverage the VerificationTest function to confirm
that individual components behave as expected. For instance, the conversion functions
like convertToLatexDoc and convertToLatexAndPdfDocs will be tested with various
input scenarios to validate their correctness.

The second step is a straightforward unit testing block verifying the expected LATEXcode
of the core parseTmaData function, with a focus on correct rendering of both Theorema
Language and Theorema Knowledge.

Integration Tests: Integration tests are not performed as part of this project: these
would otherwise ensure that the di�erent modules interact correctly. This includes ver-
ifying that the file-handling functions correctly create and manipulate LaTeX files, and
that the templates are properly filled with data from the Theorema notebooks. Inte-
gration testing would also cover the entire conversion workflow, from input notebook to
final PDF output: while some coverage through unit testing is provided, these kinds of
tests would be left to the Theorema-integration stage.

Performance Tests: Performance testing is also not performed as part of this project,
due to lack of relevance (time is not considered critical, within rational boundaries).
Performance tests would otherwise evaluate the e�ciency of the conversion process,
particularly for large and complex Theorema notebooks, for instane. Functions like

5. Closing Words 50

parseTmaData and file generation methods would be profiled using Timing and Abso-
luteTiming to identify any potential bottlenecks and ensure optimal performance. [78]

Regression Tests: Regression tests will be included to verify that new code changes
do not introduce any bugs or negatively a�ect existing functionality. This will involve
re-running all unit and integration tests after any significant code modifications.

Continuous Testing and Automation: No continuous integration pipeline or automatic
test triggers were created, relying on Mathematica UI solutions, such as Testing Note-
books, for manual testing instead.

Unknown Pattern Failures

This failure was initially anticipated for the following case: The central parseTmaData[]
recursive function was called with an expression that did not fit any of the expected
patterns, falling into the most generic case:

parseNotebookContent[other_] := StringJoin["\\textcolor{red}{", "Pattern not found! ", ToString[other], "}"]

The manually verifiable output follows the screenshot presented in Image 5.3. Also
visible is the run-on output of the string representation of the unmatched pattern printed
to the underlying LATEX. (The grayed out ”Cell reached“ and similar directives are used
for cross-referencing navigation in the output document back with the origin-document
in development.) This approach was finally abandoned in favor of the previously de-
scribed unit tests comparing the input with a specified output, rather than hinging
testing functionality upon the pattern matching process itself.

In the final versions, errors and failures are not actually passed to the output doc-
ument, and error states hindering evaluation of the main functions simply trigger mes-
sages to the user, as described in the opening of this chapter. The generalized approach
chosen for parseTmaData and described in the previous chapter relies on the unchaning
Theorema Language specification.

Figure 5.3: parseNotebookContent[other_] output in document with LATEXcommand
formatting

5. Closing Words 51

5.2 Analysis and Review
The goal of the project was to develop a robust mechanism for transforming Wolfram
Language/Theorema notebooks into LATEXdocuments: The transformation logic of the
final implementation relied heavily on pattern matching and rule-based programming
techniques to accurately map Theorema language constructs to their LATEXcounterparts.
This approach was essential for preserving both the mathematical expressions and struc-
tural elements inherent in Theorema notebooks. The solution is designed to integrate
seamlessly with the existing Theorema system, utilizing both existing data structures
and evaluation mechanisms to achieve a coherent mechanism for translation.

The modular design of the package is a key strength, allowing for straightforward
future extensions and modifications. This modularity ensures that additional features
or support for more complex Theorema constructs can be incorporated with minimal
changes to the existing codebase.

Review of the FirstTour prototype has confirmed the implementation approach’s ef-
fectiveness in automating the transformation process. Tests on various Theorema note-
book structures demonstrated the accuracy of the LATEXoutput, which faithfully repre-
sented the input notebooks, including complex nested formulas and logical constructs.
Initial feedback from the main user, the Theorema developer, is positive, highlighting
the tool’s ability to reduce the manual e�ort required for LATEXpreparation significantly.

In conclusion, the project successfully addressed the initial project objective and pro-
vides a functional tool for automating document preparation in Theorema. The project
also underscored the potential of Wolfram Language as a versatile tool for software en-
gineering, especially in the context of mathematical document processing: the present
work elaborates on the various engineering concepts in this context and presents research
on the Wolfram ecosystem extending the language in important ways in the current day.
Theorema itself, as a mature WL package and system, provided an ideal entry point to
this work.

The project repository, supporting documents, and an introductory exposé of WL
are submitted with this thesis.

5.3 Final Closing Remarks: Wolfram Language as a Software
Engineering Tool and Integrating with Other Languages and
Environments, Potential Future Work

5.3.1 Using Wolfram Language for Software Engineering
This project has demonstrated a use case for mathematical software use, the original
domain of Mathematica. In the process of researching and reading the documentation,
this researcher discovered a rich ecosystem for WL existing today, including not only
integrations with modern enterprise software frameworks, but actually a sophisticated
implementation of all the modern software engineering concepts and methodologies,
which this work has attempted to demonstrate in structured way.

5. Closing Words 52

5.3.2 Potential Future Work
Potential future work hinges on the possible integrations with the native TeXForm
functionality, for a more elaborate implementation of a to-LATEXtypsetting system and
less reliance on output-side macros (the LATEXtemplate file): possible approaches were
sketched out in chapter 3.

Aside from this, the immediately next task to be done is an integration into the
Theorema package itself.

Appendix A

Technical Documentation/Source Code

The project repository is synced in its entirety with this document and listed below.
Development in the main branch is frozen on the submission date. Any changes after

the submission of this document will be separated into a new branch. The final version
will also be submitted with this document, see Appendix B (Supplementary Materials).

The final version with any further development can be viewed online at https://
github.com/heseltime/Tma2TeX.

Listing A.1: Main Program
1
2
3 (� Wolfram Language Raw Program �)
4
5 BeginPackage["Tma2tex�"];
6
7 (� ≠≠≠≠ written by Jack Heseltine, July 2023 ≠ July 2024
8 Updates
9 ≠ August ≠ December 2023: Set up project structure and basic recursion rule tests

10 ≠ January 2024: Introduce common WL≠Package structure
11 ≠ February 2024: Add convertToLatexFromString for Cloud≠testing
12 ≠ March/April 2024: Split recursion into parseNbContent and getTmaData/parseTmaData
13 ≠ May/June 2024: try approach with TeXForm transformation
14 ≠ [Test≠wise: July 2024: MakeTeX refactor using TeXForm implementation as basis]
15 ≠ August 2024: Back to the Basics with Formula≠In≠Macro≠Structure≠Out Approach, in

Cleaned≠Up File
16 ≠ Move pre≠August 2024 work to "V0"
17
18 Purpose: This program recurses over the Theorema notebook structure to produce a LaTeX

representation, including of the
19 underlying Theorema≠Datastructure: to this end it inserts the appropriate LaTeX≠

commands into an output file, mediated
20 by a template in the $resDir. Both the notebook≠ and Theorema≠level content is rendered

using the relevant LaTeX packages
21 and should be modified in LaTeX for the output syntax.
22
23 Part 1 of this package is concerned with the described double≠recursion, drawing mainly

on the Theorema≠data provisioned in Part 0.
24 For academic purposes, Part 1 is subdivided in Parts
25
26 � A: parseNbContent, the main recursive function , with the output≠nearer LaTeX≠

53

https://github.com/heseltime/Tma2TeX
https://github.com/heseltime/Tma2TeX

A. Technical Documentation/Source Code 54

commands,
27 � B: also parseNbContent, higher level , Theorema≠notebook specific pattern≠recursion

rules ,
28 � C: getTmaData and parseTmaData, concerned with establishing the connection between

the appropriate part in the input notebook/
29 output LaTeX and the given Theorema data, and parsing, again recursively , the formula

structure , respectively .
30
31 Part 0 is also subdivided in an out/inside≠of≠package Part A and B respectively, to

illustrate packaging in Wolfram Language.
32
33 The result is inserted into the appropriate LaTeX template (Part 2, Filehandling): the

main functions intended
34 for use by the client is at the end of the program, Part 3, specifically

convertToLatexAndPdfDocs[] as the all≠in≠one transformation
35 function for stand≠alone≠calling ≠ but convertToLatexDoc[] for the basic Theorema use

case. Both functions take the path to the relevant
36 Theorema notebook as their single parameter.
37
38 ≠≠≠≠ �)
39
40
41
42
43 (� ≠≠ Part 0, Imports and Global Variables as per Theorema Specification ≠≠ �)
44
45 (� ≠≠ Part 0.A, Imports and Global Variables OUTSIDE≠OF≠PACKAGE ≠≠ �)
46
47 (� ≠≠ Part 0.A.1 Optional Theorema≠Import with Get ≠≠ �)
48
49 (� << Theorema� �)
50 (� Uncomment the Tma≠Get call if NOT called from inside the Tma≠Package or an

environment that loads Tma already �)
51
52 Needs["Theorema�"]
53
54 (� ≠≠ Part 0.A.2 Global Variables: Important for interfacing with Theorema. ≠≠ �)
55 Tma2tex�$resDir::usage = "Defines the directory for LaTeX-templates and any other

resources."
56
57 Tma2tex�$resDir = "C:\\Users\\jackh\\git\\repository\\tma2tex\\res"
58
59
60 Tma2tex�$tmaData::usage = "Containes the Theorema-Datastructure that holds formula-

experessions and is therefore typically equivalent to
61 Theorema�Common�$tmaEnv on the Theorema-side, but can be used to show the content

according to Tma2Tex (as a separate package)."
62
63 Tma2tex�$tmaData = Theorema�Common�$tmaEnv;
64
65
66 (� ≠≠ Part 0.A.3 Client≠Function≠Usage Messages �)
67 convertToLatexDoc::usage="convertToLatexDoc[notebookPath] transforms a given WL

notebook (by file path) to TeX output, creating a new TeX file from a specified
resource template."

68 convertToLatexAndPdfDocs::usage="convertToLatexAndPdfDocs[notebookPath] transforms a
given WL notebook (by file path) to PDF file as final output, with TeX file as

A. Technical Documentation/Source Code 55

intermediary step, from a specified resource template."
69
70 (� Test≠wise: �)
71 convertToLatexFromString::usage="convertToLatexFromString[nbContentString_,

resourceDir_Optional]: Tma2tex�$resDir] is experimental and intended be called
from the Cloud, simply transofrming Wolfram Language String Input to TeX Output
(returned directly, not via file). Also uses a template, the resource for which
can be passed as the second argument."

72
73 Begin["�Private�"]
74
75 (�Needs["Texformdump�"]�) (� loaded in Private� for internal implementation details �)
76 (� See TeXForm Notes in the Thesis: this approach was not chosen, finally . �)
77
78 (� ≠≠ Part 0.B, Imports and Global Variables INSIDE≠OF≠PACKAGE ≠≠ �)
79
80 (� Custom messages for problems importing or invalid settings �)
81 tmaDataImport::empty = "�1�";
82 documentProcessingLevel::invalidParameter = "�1�";
83
84 (� The following holds the Tma≠Formula≠List as an association with keys from the IDs, gets

filled in getTmaData[] �)
85 tmaDataAssoc = <||>;
86
87 (� Define the global private variable with a default value �)
88 Tma2tex�$documentProcessingLevel = ""; (� or "Full" or "None"
89 where leaving it empty defaults to basic text (some parseNbContent) and formulas (

parseTmaData),
90 "Full" gives more content by visualizing types of WL≠structures (lists , cells) ommitted (

extensible),
91 and "None" gives only the formulas �)
92
93 (� ≠≠ Part 1.A, Recursive Pattern Matching: parseNbContent[] with a focus on (mathematical)

symbol≠level transformations ≠≠ �)
94
95 (� ≠≠ Part 1.A.0 ≠≠ Structural Expressions: Colored diamonds to demarcate structural text

output from content
96 ≠ Only process these if DocumentProcesingLevel is "Full" �)
97 parseNbContent[___] = If[$documentProcessingLevel == "Full", "\\colordiamond{black}"

, ""];
98
99 parseNbContent[Notebook[l_List, ___]] := If[$documentProcessingLevel == "Full", "\\

legend \\n\\n \\colordiamond{yellow}", ""] <> parseNbContent[l]
100 (� goes to parseNbContent[l_List], this our entry point to parsing �)
101
102 parseNbContent[c_Cell] := If[$documentProcessingLevel == "Full", "\\colordiamond{red

}", ""] (� matches Cells that are not further specified (as relevant WL or TMA cells) below
�)

103
104 parseNbContent[l_List] := If[$documentProcessingLevel == "Full", "\\colordiamond{

blue}", ""] (� matches Lists that are not further specified (as relevant WL or TMA cells)
below �)

105 parseNbContent[l_List] /; MemberQ[l, _Cell] := StringJoin[If[
$documentProcessingLevel == "Full", "\\colordiamond{purple}", ""], ToString /@
parseNbContent /@ l]

106 (� matches Lists with at least one Cell �)
107

A. Technical Documentation/Source Code 56

108 parseNbContent[Cell[CellGroupData[l_List, ___], ___]] := If[$documentProcessingLevel
== "Full", "\\colordiamond{green}", ""] <> parseNbContent[l]

109 (� CellGroupData often contain relevant content �)
110
111
112 (� ≠≠ Part 1.A.1 ≠≠ Text Expressions (at the Cell Level): Not processed if

DocumentProcessingLevel = "None", otherwise yes. �)
113
114 parseNbContent[Cell[text_String, "Text", ___]] := If[$documentProcessingLevel != "

None", "\\begingroup \\section*{} " <> text <> "\\endgroup \n\n", ""]
115
116 parseNbContent[Cell[text_String, "Section", ___]] := If[$documentProcessingLevel !=

"None", "\\section{" <> text <> "}\n\n", ""]
117
118
119 (� ≠≠ Part 1.A.2 ≠≠ Text/Math/Symbols at the String Level �)
120
121 (� Example: Operators �)
122 parseNbContent["<"] := If[$documentProcessingLevel != "None", "\\textless", ""]
123
124 parseNbContent[">"] := If[$documentProcessingLevel != "None", "\\textgreater", ""]
125
126 (� Example: Greek Letters �)
127 parseNbContent["\[CapitalDelta]"] := If[$documentProcessingLevel != "None", "\\Delta

", ""]
128
129
130 (� ≠≠ Part 1.A.3 ≠≠ Boxes �)
131
132 parseNbContent[Cell[BoxData[FormBox[content_, TraditionalForm]], "DisplayFormula",

___]] :=
133 If[$documentProcessingLevel != "None", StringJoin["\\begin{center}",

parseNbContent[content], "\\end{center}\n"], ""]
134
135 (� This particular rule does a lot of the parsing through the Tma≠Env. �)
136 parseNbContent[RowBox[list_List]] :=
137 If[$documentProcessingLevel != "None", StringJoin[parseNbContent /@ list], ""]
138
139 (� Underscriptboxes �)
140 parseNbContent[UnderscriptBox[base_, script_]] :=
141 If[$documentProcessingLevel != "None", StringJoin["\\underset{", parseNbContent[

script], "}{", parseNbContent[base], "}"], ""]
142
143 parseNbContent[UnderscriptBox["\[Exists]", cond_]] :=
144 If[$documentProcessingLevel != "None", "\\underset{" <> parseNbContent[cond] <>

"}{\\exists}", ""]
145 parseNbContent[UnderscriptBox["\[ForAll]", cond_]] :=
146 If[$documentProcessingLevel != "None", "\\underset{" <> parseNbContent[cond] <>

"}{\\forall}", ""]
147
148 (� ≠≠ Part 1.A.4 ≠≠ Box≠Structure Parsing ≠ See TeXForm Notes in Thesis and compare

parseTmaData,
149 this was the formula parsing approach finally selected here �)
150
151 parseNbContent[RowBox[{left_, "\[And]", right_}]] :=
152 If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left], " \\land

", parseNbContent[right]], ""]

A. Technical Documentation/Source Code 57

153
154 parseNbContent[RowBox[{left_, "\[Or]", right_}]] :=
155 If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left], " \\lor

", parseNbContent[right]], ""]
156
157 parseNbContent[RowBox[{left_, "\[DoubleLeftRightArrow]", right_}]] :=
158 If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left], " \\

Leftrightarrow ", parseNbContent[right]], ""]
159
160 parseNbContent[RowBox[{left_, "\[Implies]", right_}]] :=
161 If[$documentProcessingLevel != "None", StringJoin[parseNbContent[left], " \\

Rightarrow ", parseNbContent[right]], ""]
162
163 parseNbContent[RowBox[{left_, "<", right_}]] :=
164 If[$documentProcessingLevel != "None", parseNbContent[left] <> " < " <>

parseNbContent[right], ""]
165
166 parseNbContent[RowBox[{left_, ">", right_}]] :=
167 If[$documentProcessingLevel != "None", parseNbContent[left] <> " > " <>

parseNbContent[right], ""]
168
169 parseNbContent[RowBox[{left_, "\[Equal]", right_}]] :=
170 If[$documentProcessingLevel != "None", parseNbContent[left] <> " = " <>

parseNbContent[right], ""]
171
172 parseNbContent[RowBox[{left_, "\[SubsetEqual]", right_}]] :=
173 If[$documentProcessingLevel != "None", parseNbContent[left] <> "\\subseteq" <>

parseNbContent[right], ""]
174
175 parseNbContent[RowBox[{left_, "\[Element]", right_}]] :=
176 If[$documentProcessingLevel != "None", parseNbContent[left] <> "\\in" <>

parseNbContent[right], ""]
177
178
179
180 (� ≠≠ Part 1.B.0 ≠≠ Theorema≠Language/≠Notebook≠specific Expressions,
181 these are the jumping o� point to the second kind of recursive descent in this program,
182 parsing through the Theorema≠Datastructure �)
183
184 (� Not needed: separating line in the tmanotebook �)
185
186 (�parseNbContent[Cell["", "OpenEnvironment", ___]] :=
187 "\\begin{openenvironment}\n\\end{openenvironment}"
188 �)
189
190 (� Not needed: the following cell ≠> cellgroup ≠> list of cells is the environment, with

environment cells after the header≠cell �)
191
192 (�parseNbContent[Cell[CellGroupData[{Cell[headertext_, "EnvironmentHeader", options___],

envcells___}, ___]]] :=
193 Module[{contentStrings},
194 contentStrings = StringJoin[parseNbContent /@ {envcells}]; (� Apply parsing to each

cell �)
195 StringJoin[
196 "\\begin{tmaenvironment}\n",
197 "\\subsection{", parseNbContent[headertext], "}\n",
198 contentStrings,

A. Technical Documentation/Source Code 58

199 "\\end{tmaenvironment}\n"
200]
201]
202 *)
203
204 (� Main Parser≠Function to capture relevant formulas and create the link to the Tma≠

Datastructure �)
205 parseNbContent[
206 Cell[CellGroupData[{Cell[headertext_, "EnvironmentHeader", headeroptions___],
207 Cell[formulaboxdata_, "FormalTextInputFormula", options___],
208 furtherNotebookEnvCells___},
209 envOptions___]]] :=
210 Module[{contentStrings, cellID, optionsAssociation, headerParts, smallCapsPart,

regularPart},
211
212 (� Split the header text at the opening parenthesis and format parts accordingly �)
213 headerParts = StringSplit[headertext, "("];
214 smallCapsPart = StringTrim@ToLowerCase[headerParts[[1]]]; (� Make the first part

small caps �)
215 regularPart = StringReplace[headerParts[[2]], ")" -> ""]; (� Remove the closing

parenthesis �)
216
217 contentStrings = StringJoin[parseNbContent /@ {furtherNotebookEnvCells}];
218 optionsAssociation = Association[options];
219 cellID = optionsAssociation[CellID];
220
221 (� Print statement for debugging purposes �)
222 Print[smallCapsPart <> " " <> ToString[cellID] <> " found, linking to Tma-Data

..."];
223
224 StringJoin[
225 "\\EnvironmentWithFormat{", smallCapsPart, "}{", regularPart, "}\n",
226 If[cellID =!= None,
227 formatTmaData@parseTmaData[getTmaData[cellID]],
228 StringJoin["\\textcolor{red}{", "No ID Found: Did you load Theorema and

evaluate the Theorema cells from the same kernel as this call?", "}\n"]
229],
230 "\\end{EnvironmentWithFormat}\n\n"
231]
232]
233
234
235
236 (� Same as above but with inermediate Tma≠Defintions: these are captured directly in the

formula gotten with getTmaData however �)
237 parseNbContent[Cell[CellGroupData[{Cell[headertext_, "EnvironmentHeader",

headeroptions___],
238 (� Tma≠Definitions: �) __, (� These could be outputed to PDF if needed �)
239 Cell[formulaboxdata_, "FormalTextInputFormula", options___],
240 furtherNotebookEnvCells___},
241 envOptions___]]] :=
242 Module[{contentStrings, cellID, optionsAssociation, headerParts, smallCapsPart

, regularPart},
243
244 (� Split the header text at the opening parenthesis and format parts accordingly �)
245 headerParts = StringSplit[headertext, "("];
246 smallCapsPart = StringTrim@ToLowerCase[headerParts[[1]]]; (� Make the first

A. Technical Documentation/Source Code 59

part small caps �)
247 regularPart = StringReplace[headerParts[[2]], ")" -> ""]; (� Remove the

closing parenthesis �)
248
249 contentStrings = StringJoin[parseNbContent /@ {furtherNotebookEnvCells}];
250 optionsAssociation = Association[options];
251 cellID = optionsAssociation[CellID];
252
253 (� Print statement for debugging purposes �)
254 Print[smallCapsPart <> " " <> ToString[cellID] <> " with helper definitions

found, linking to Tma-Data ..."];
255
256 StringJoin[
257 "\\EnvironmentWithFormat{", smallCapsPart, "}{", regularPart, "}\n",
258 If[$documentProcessingLevel == "Full", "\\colordiamond{orange}", ""], (�

This is included for explainability in the PDF≠output �)
259 If[cellID =!= None,
260 formatTmaData@parseTmaData[getTmaData[cellID]],
261 StringJoin["\\textcolor{red}{", "No ID Found: Did you load Theorema

and evaluate the Theorema cells from the same kernel as this call?", "}\n"]
262],
263 "\\end{EnvironmentWithFormat}\n\n"
264]
265]
266
267 (� Similar to Tma≠Envs, but no Header Text: these shoudl also not be printed �)
268
269 (�parseNbContent[Cell[BoxData[
270 RowBox[{envcells___}]], "GlobalDeclaration", ___]] :=
271 Module[{contentStrings},
272 contentStrings = StringJoin[parseNbContent /@ {envcells}];
273 StringJoin[
274 "\\begin{tmaenvironmentgd}\n",
275 "\\subsubsection{Global Declaration}\n", (� Maybe �)
276 contentStrings,
277 "\\end{tmaenvironmentgd}\n"
278]
279]*)
280
281
282 (� Global Declarations should not be printed �)
283
284 (�parseNbContent[Cell[BoxData[content_], "GlobalDeclaration", ___]] :=
285 Module[{contentStrings},
286 contentStrings = parseNbContent[content]; (� Directly pass the content to

parseNbContent �)
287 StringJoin[
288 "\\begin{tmaenvironmentgd}\n",
289 "\\subsubsection{Global Declaration}\n", (� Optional title �)
290 contentStrings,
291 "\\end{tmaenvironmentgd}\n"
292]
293]
294 *)
295
296
297

A. Technical Documentation/Source Code 60

298 (� Parse the cells in the theorema environment list one by one: the empty string below
generally marks the beginning of a Tma Cell in the TeX �)

299 parseNbContent[Cell[BoxData[rowboxes___], "FormalTextInputFormula", ___]] := "" <>
StringJoin[parseNbContent /@ {rowboxes}]

300
301 (� ensure we handle nested RowBox instances correctly by recursively parsing their content �)
302 parseNbContent[RowBox[list_List]] :=
303 StringJoin[parseNbContent /@ list]
304
305 (� rowbox on list in Part 1A.0.2.0 �)
306
307 (� Tma≠Env elements that occur within {lists}, often inside RowBox[] �)
308 parseNbContent[TagBox["(","AutoParentheses"]] := "\\left("
309 parseNbContent[TagBox[")","AutoParentheses"]] := "\\right)"
310 (�parseNbContent[UnderscriptBox["\[ForAll]", "x "]] := "forAll "�)
311 parseNbContent[RowBox[{n_, "[", var_, "]"}]] := n <> "[" <> var <> "]"
312 parseNbContent[TagBox["\[DoubleLeftRightArrow]", ___]] := " \\Leftrightarrow "
313
314 (� Subscriptboxes �)
315 parseNbContent[SubscriptBox[base_, subscript_]] :=
316 parseNbContent[base] <> "_{" <> parseNbContent[subscript] <> "}"
317
318 parseNbContent[TagBox[content_, _, SyntaxForm -> "a\[Implies]b"]] :=
319 "\\rightarrow "
320
321
322 parseNbContent[Cell["\[GraySquare]", "EndEnvironmentMarker", ___]] :=
323 " \\graysquare{}"
324
325
326 (� ≠≠ Part 1.B.1 ≠≠ Out≠of≠Flow Expressions: Reap and Sow mechanism to process in a

di�erent order than the expressions are encountered in �)
327
328 parseNbContent[Cell[t_String, "Title", ___]] := (Sow[t, "title"]; Sow["", "author"];

Sow["", "date"]; "") (� author and date currently not included in sample doc �)
329
330
331
332 (� ≠≠ Part 1.B.2 ≠≠ Key for Testing? Highlight Unclaimed Expressions �)
333
334 parseNbContent[other_] := StringJoin["\\textcolor{red}{", "Pattern not found! ",

ToString[other], "}"]
335
336
337 (� ≠≠ Part 1.B.3 ≠≠ String Processing for Symbols Occuring In≠text in the Notebook �)
338 parseNbContent[s_String] := StringReplace[s, "\[SubsetEqual]" -> "\\subseteq"]
339
340
341
342 (� ≠≠ Part 1.C.0, Recursive Pattern Matching: getTmaData[] selects the relevant part in

Theorema�Common�FML$ in preparation
343 for a second recursive descent , see 1.B.2 ≠≠ �)
344
345 getTmaData[id_Integer] := Module[{assoc, cleanStringKeysAssoc, numericKeysAssoc},
346 assoc = Association[Cases[$tmaData, Theorema�Common�FML$[{idFormula_, _}, expr_,

no_] :> (idFormula -> expr), {1}]];
347 cleanStringKeysAssoc = Association[StringReplace[#, "ID:" -> ""] -> assoc[#] & /

A. Technical Documentation/Source Code 61

@ Keys[assoc]];
348 numericKeysAssoc = Association[ToExpression[#] -> cleanStringKeysAssoc[#] & /@

Keys[cleanStringKeysAssoc]];
349 numericKeysAssoc[id]
350]
351
352 (� ≠≠ Part 1.C.1, Recursive Pattern Matching: Second Recursive Descent ≠≠ �)
353
354 (� Alternative 1: Operation is known, it is in the language:
355 In this case, there should be a TeX≠macro, i.e. Curly≠Brackets≠Case �)
356 parseTmaData[op_?isTmaLanguageSymbol[args___]] :=
357 Module[{nextOp, argList, parsedArgs},
358 nextOp = prepareSymbolName[op];
359 argList = {args};
360 parsedArgs = Switch[
361 Length[argList], (� 1 argument in the majority of cases �)
362 1, "{" <> parseTmaData[argList[[1]]] <> "}",
363 2, "{" <> parseTmaData[argList[[1]]] <> "}{" <> parseTmaData[argList[[2]]] <>

"}",
364 3, "{" <> parseTmaData[argList[[1]]] <> "}{" <> parseTmaData[argList[[3]]] <>

"}",
365 _, "" (� unexpected number of arguments: abort the parse tree here �)
366];
367 " \\" <> ToString[nextOp] <> parsedArgs
368]
369
370 (� Alternative 2: Knowledge≠case ≠ Predicate or Function Symbol, not Language≠Operator �)
371 parseTmaData[op_[args___]] :=
372 Module[{nextOp, argList, parsedArgs},
373 nextOp = prepareSymbolName[op];
374 argList = {args};
375 parsedArgs = Switch[
376 Length[argList], (� 1 argument in the majority of cases �)
377 1, "[" <> parseTmaData[argList[[1]]] <> "]",
378 2, "[" <> parseTmaData[argList[[1]]] <> ", " <> parseTmaData[argList[[2]]] <>

"]",
379 _, "" (� unexpected number of arguments: abort the parse tree here �)
380];
381 " " <> ToString[nextOp] <> parsedArgs (� Does not get prefixed with "\"! �)
382]
383
384 (� Alternative 3: Special Case Two≠Agument≠Sets e.g.
385
386 Theorema�Language�Annotated$TM[Theorema�Language�Less$TM,
387 Theorema�Language�SubScript$TM[Theorema�Knowledge�lex$TM]]
388 [Theorema�Language�VAR$[Theorema�Knowledge�VAR$a$TM],
389 Theorema�Language�VAR$[Theorema�Knowledge�VAR$b$TM]]
390
391 ... transforms to more complex macro �)
392 parseTmaData[op_?isTmaLanguageSymbol[args___][args2___]] :=
393 Module[{nextOp, argList, argList2, parsedArgs, parsedArgs2},
394 nextOp = prepareSymbolName[op];
395 argList = {args};
396 parsedArgs = Switch[
397 Length[argList],
398 1, "{" <> parseTmaData[argList[[1]]] <> "}",
399 2, "{" <> parseTmaData[argList[[1]]] <> "}{" <> parseTmaData[argList[[2]]] <> "}

A. Technical Documentation/Source Code 62

",
400 3, "{" <> parseTmaData[argList[[1]]] <> "}{" <> parseTmaData[argList[[3]]] <> "}

",
401 _, "" (� Unexpected number of arguments: stop parsing here �)
402];
403
404 argList2 = {args2};
405 parsedArgs2 = Switch[
406 Length[argList2],
407 1, "{" <> parseTmaData[argList2[[1]]] <> "}",
408 2, "{" <> parseTmaData[argList2[[1]]] <> "}{" <> parseTmaData[argList2[[2]]] <>

"}",
409 3, "{" <> parseTmaData[argList[[1]]] <> "}{" <> parseTmaData[argList[[3]]] <> "}

",
410 _, "" (� Unexpected number of arguments: stop parsing here �)
411];
412 " \\" <> ToString[nextOp] <> parsedArgs <> parsedArgs2
413]
414
415 (� Special Case/Alternative 4: Numbers �)
416 parseTmaData[i_Integer] := (� e.g. in Theorema�Language�VAR$[Theorema�Knowledge�

VAR$m1$TM], 2],
417 2 eventually gets processed�)
418 ToString[i]
419
420 (� Recursion≠Stop (Alternative 5) Axiomatic Expression/No Operation �)
421 parseTmaData[ax_] := (� e.g. Theorema�Knowledge�VARxTM, i.e. axioms/parse≠tree leaves

�)
422 prepareSymbolName[ax]
423
424 (� ≠≠ Part 1.C.2, Auxilliary Functionality ≠≠ �)
425
426 isTmaLanguageSymbol[f_Symbol] := (� Context required here to distinguish from predicates like

Theorema�Knowledge�P$TM �)
427 With[{n = SymbolName[f], c = Context[f]},
428 c === "Theorema�Language�"
429]
430 isTmaLanguageSymbol[f_] := False
431
432 prepareSymbolName[op_Symbol] :=
433 With[{n = SymbolName[op]},
434 If[StringTake[n, -3] == "$TM",
435 If[StringTake[n, 4] == "VAR$", (� e.g. Theorema�Knowledge�VARxTM �)
436 (�"\\" <> �)StringDrop[StringDrop[n, 4], -3](� <> "TM"�),
437 (�else�) (� e.g. Theorema�Language�Forall$TM, but: Theorema�Knowledge�Q$TM

�)
438 If[isTmaLanguageSymbol[op], (� only language should be su�xed with TM for

TeX≠Macros �)
439 (�"\\" <> �)StringDrop[n, -3] <> "TM",
440 (�else�)
441 StringDrop[n, -3]
442]
443],
444 (�else�)
445 If[StringTake[n, -1] == "$", (� e.g. VAR$ �)
446 StringDrop[n, -1] <> "TM",
447 (�else�)

A. Technical Documentation/Source Code 63

448 n <> "TM"
449]
450]
451]
452
453 (� ≠≠ Part 1.C.3, Final String≠level Replacements ≠≠ �)
454
455 formatTmaData[parsedExpression_String] :=
456 Module[{replacedString}, (� As needed �)
457 replacedString = StringReplace[parsedExpression, ""->""];
458 replacedString <> "\\n\\n" (� Take care that LaTeX outputs are on their own lines here �)
459]
460
461 (� ≠≠ Part 2, Filehandling ≠≠ �)
462
463 writeToLatexDoc[latexPath_, nbContent_] :=
464 Module[{strm }, strm = OpenWrite[latexPath];
465 WriteString[strm, parseNbContent[nbContent]];
466 Close[strm]] (� stream handling, call to pattern Matching part �)
467
468 getLatexPath[notebookPath_String] :=
469 Module[{directory, baseName, latexExtension = ".tex"},
470 directory = DirectoryName[notebookPath];
471 baseName = FileBaseName[notebookPath];
472 FileNameJoin[{directory,
473 baseName <>
474 latexExtension}]] (� get the latex file name (the new .tex file \
475 that is being filled with the nb≠content) with full path from a given \
476 notebook path�)
477
478 getLatexTemplatePath[notebookPath_String] :=
479 Module[{directory, baseName, latexExtension = ".tex"},
480 directory = DirectoryName[notebookPath];
481 baseName = FileBaseName[notebookPath] <> "TheoremaTemplate";
482 FileNameJoin[{directory,
483 baseName <>
484 latexExtension}]] (� get the latex file name (the .tex≠template \
485 which includes the main nb≠content≠.tex≠file correctly) with full \
486 path from a given notebook path�)
487
488 fillLatexTemplate[resDir_String, data_Association] :=
489 Module[{texContent, template,
490 filledContent},(�Import the LaTeX template�)
491 texContent =
492 Import[FileNameJoin[{resDir, "tmaTemplate.tex"}], "Text"];
493 (�no template object needed here�)template = texContent;
494 (�Apply the data to the template�)
495 filledContent = TemplateApply[template, data];
496 (�Return the filled content�)filledContent]
497
498
499 (� ≠≠ Part 3, Main Functions for Client ≠≠ �)
500 Options[convertToLatexDoc] = {DocumentProcessingLevel -> ""};
501 convertToLatexDoc[notebookPath_, OptionsPattern[]] := Module[{nb, content,

latexPath, latexTemplatePath,
502 resourceDir = $resDir, texResult, sownData, filledContent, closeFlag = False,

documentProcessingLevel},

A. Technical Documentation/Source Code 64

503 If[Length[$tmaData] == 0, (� Issue message if Theorema≠Formula≠Data not provisioned �)
504 Message[tmaDataImport::empty, "The Theorema-Formula-Datastructure is empty.
505 Did you evaluate a Theorema notebook before loading the package and calling the

conversion function?"];
506 (� Additional handling for empty data can be added here �)
507 Return[$Failed]
508];
509
510 (� Retrieve , validate and set document processing level �)
511 documentProcessingLevel = OptionValue[DocumentProcessingLevel];
512 If[documentContentProcessingLevel =!= "", (� Default for fns and pkg is empty string �)
513 SetDocumentProcessingLevel[documentProcessingLevel]
514];
515
516 nb = If[isNotebookOpen[notebookPath],
517 NotebookOpen[notebookPath],
518 NotebookOpen[notebookPath, Visible->False]; closeFlag = True];
519
520 content = NotebookGet[nb];
521 NotebookEvaluate[content]; (� on content: important,
522 so that Tma env. variables are available in any case �)
523 latexPath = getLatexPath[notebookPath];
524 latexTemplatePath = getLatexTemplatePath[notebookPath];
525 (� filledContent =
526 fillLatexTemplate [
527 resourceDir, <|"nbName" ≠> FileBaseName[notebookPath]|>];�)
528 {texResult, sownData} = Reap[parseNbContent[content], {"title", "author", "date"

}];
529 filledContent = fillLatexTemplate[resourceDir,
530 <|
531 "nbContent" -> texResult,
532 "nbTitle" -> First[sownData[[1, 1]]],
533 "nbAuthor" -> First[sownData[[2, 1]]],
534 "nbDate" -> First[sownData[[3, 1]]]
535 |>];
536 Export[latexPath, filledContent, "Text"];
537 (�Print[Theorema�Common�$tmaEnv];�)
538
539 If[closeFlag === True, NotebookClose[notebookPath]];
540]
541
542 (� Helper fn to determin if the notebook specified by the given path is open �)
543 isNotebookOpen[path_] :=
544 Module[{c},
545 Quiet[MemberQ[Notebooks[],
546 n_ /; (c = "FileName" /. NotebookInformation[n]; c[[2]]) ===
547 FileNameTake[path, -1]]]]
548
549 (� Helper fn to set the document processing level �)
550 SetDocumentProcessingLevel[level_String] :=
551 Module[{},
552 If[MemberQ[{"Full", "None", ""}, level],
553 Tma2tex�$documentProcessingLevel = level,
554 Message[documentProcessingLevel::invalidParameter, "Invalid parameter (option)

DocumentProcessingLevel set: should be empty string (default), Full, or None."];
555 Return[$Failed]
556]

A. Technical Documentation/Source Code 65

557]
558
559 Options[convertToLatexAndPdfDocs] = {DocumentProcessingLevel -> ""};
560 convertToLatexAndPdfDocs[notebookPath_, OptionsPattern[]] := Module[{latexPath,

pdfPath, compileCmd, conversionResult},
561 conversionResult = convertToLatexDoc[notebookPath, DocumentProcessingLevel->

OptionValue[DocumentProcessingLevel]];
562 If[conversionResult === $Failed,
563 Return[$Failed]
564];
565 (� Compile LaTeX to PDF using pdflatex �)
566 latexPath = getLatexPath[notebookPath];
567 pdfPath = StringReplace[latexPath, ".tex" -> ".pdf"];
568 compileCmd =
569 "pdflatex -interaction=nonstopmode -output-directory=" <>
570 DirectoryName[latexPath] <> " " <> latexPath;
571 RunProcess[{"cmd", "/c", compileCmd}];
572]
573
574 (� Test≠Implementation �)
575 convertToLatexFromString[nbContentString_, resourceDir_Optional: Tma2tex�$resDir] :=

Module[
576 {nbContent, texResult, sownData, filledContent},
577
578 (� Convert the string representation to a Wolfram Language expression �)
579 nbContent = ToExpression[nbContentString, InputForm];
580
581 (� Process the notebook content �)
582 {texResult, sownData} = Reap[parseNbContent[nbContent], {"title", "author", "

date"}];
583
584 (� Fill in the LaTeX template with parsed content �)
585 filledContent = fillLatexTemplate[resourceDir,
586 <|
587 "nbContent" -> texResult,
588 "nbTitle" -> First[sownData[[1, 1]]],
589 "nbAuthor" -> First[sownData[[2, 1]]],
590 "nbDate" -> First[sownData[[3, 1]]]
591 |>
592];
593
594 (� Return the filled LaTeX content as a string �)
595 filledContent
596]
597
598
599 (�Remove["Texformdump��"]�)
600
601 End[]
602
603 EndPackage[];

Note: The following is the output of a test notebook (tma2tex/tma2tex.nb in the
repo) that calls the main program printed above; the Mathematica-notebook-basis (the
input notebook) is not printed here due to its length but also available in the repo.

Listing A.2: F̈irst TourÖutput in LaTeX Format

A. Technical Documentation/Source Code 66

1 %% AMS≠LaTeX Created with the Wolfram Language : www.wolfram.com
2 % from Wolfram template for LaTeX
3
4 \documentclass{article}
5
6 %% Packages
7 \usepackage{amsmath, amssymb, graphics, setspace, xcolor}
8
9 % for symbol encoding, e.g. "<", see also the following resource :

10 % https://tex .stackexchange.com/questions/2369/why≠do≠the≠less≠than≠symbol≠and≠the≠
greater≠than≠symbol≠appear≠wrong≠as

11 \usepackage{lmodern}
12
13 %% For development purposes
14 % Define a command for light gray text for structure elements
15 \newcommand{\light}[1]{{\color{lightgray}#1}}
16
17 %% Structural elements of LaTeX document
18 % Gray box for Tma envs
19 \usepackage{tcolorbox}
20
21 %% Approach 1: Define a new tcolorbox environment for theorema environments
22 \newtcolorbox{tmaenvironment}{
23 colback=gray!20, % Background color: gray with 20% intensity
24 colframe=black, % Frame color: black
25 boxrule=0, % Frame thickness
26 arc=4pt, % Corner rounding
27 boxsep=5pt, % Space between content and box edge
28 left=5pt, % Left interior padding
29 right=5pt % Right interior padding
30 }
31
32 %% Strucutral elements of the symbol level
33 % QED ≠ gray square
34 \usepackage{tikz}
35 \newcommand{\graysquare}{\tikz\fill[gray] (0,0) rectangle (0.2cm,0.2cm);\hspace{0.2

cm}}
36
37 % Centered diamond shape in a specified color
38 \newcommand{\colordiamond}[1]{%
39 \tikz[baseline={([yshift=-0.3ex]current bounding box.center)}]
40 \fill[#1] (0,0) -- (0.08cm,0.08cm) -- (0,0.16cm) -- (-0.08cm,0.08cm) -- cycle;\

xspace
41 }
42
43 % e.g.
44 % \colordiamond{red}
45 % \colordiamond{green}
46 % \colordiamond{blue}
47
48 % Define a command to create a right≠aligned, smaller legend
49 \newcommand{\legend}{
50 \begin{tcolorbox}[
51 title=Tma2tex-parsing Info/Legend,
52 colback=white,
53 colframe=black,
54 boxrule=0.5mm,

A. Technical Documentation/Source Code 67

55 arc=4pt,
56 width=6cm, % Adjust width to make it smaller
57 float=right, % Moves the legend to the right
58 halign=left, % Aligns the text within the box to the left
59 left=2mm, % Interior left margin
60 right=2mm, % Interior right margin
61 boxsep=1mm % Reduces the separation between the text and the border
62]
63 \colordiamond{yellow} Yellow: Represents entry points to parsing. \\
64 \colordiamond{orange} Orange: Helper Definitions were defined in the Theorema

Notebook interface, but are directly included in the following formula. \\
65 \colordiamond{red} Red: Matches unspecified cells or generic content. \\
66 \colordiamond{blue} Blue: Represents lists of specific content. \\
67 \colordiamond{purple} Purple: Used for lists of generic cells. \\
68 \colordiamond{green} Green: Represents a CellGroupData Element with a List

inside, a relevant content structure typically. \\
69 \end{tcolorbox}
70 }
71
72
73 %% Approach 2: Dynamic environments
74 \usepackage{xparse} % To allow more flexible macro definitions
75
76 % Define a generic environment handler
77 \NewDocumentCommand{\EnvironmentWithFormat}{m m o}{%
78 \IfValueTF{#3} % Check if there is an optional argument
79 {%
80 \begin{#1}[#3]%
81 \textsc{#2}%
82 \newline % Add a newline before the content
83 }
84 {%
85 \begin{#1}%
86 \textsc{#2}%
87 \newline % Add a newline before the content
88 }
89 }
90
91 % Define sample environments for demonstration
92 \newenvironment{proposition}[1][]{
93 \noindent\textbf{Proposition #1:}
94 }{\par}
95
96 \newenvironment{definition}[1][]{
97 \noindent\textbf{Definition #1:}
98 }{\par}
99

100 \newenvironment{lemma}[1][]{
101 \noindent\textbf{Lemma #1:}
102 }{\par}
103
104
105 %% ≠≠≠
106 %% Theorema Symbols are defined as custom LaTeX commands here! (BEGIN)
107 %%
108 %% In no particular order, except that it generally matches the parsing rules found in tma2

tex.wl, Part 1.C.1,

A. Technical Documentation/Source Code 68

109 %% these commands define the syntax for theorema symbols in the LaTeX output. The naming
convention is

110 %% to use the symbol name in the Theorema code, but without dollar signs or context path.
111 %%
112 %% So for example, the symbol
113 %% TheoremaAnd$TM (with full context) becomes AndTM, and so on.
114 %% ≠≠≠
115
116 % Logical Operations
117 \newcommand{\IffTM}[2]{\left(#1 \iff #2\right)}
118 \newcommand{\AndTM}[2]{\left(#1 \land #2\right)}
119 \newcommand{\ImpliesTM}[2]{\left(#1 \rightarrow #2\right)}
120 \newcommand{\OrTM}[2]{\left(#1 \lor #2\right)}
121
122 % Quantifiers
123 \newcommand{\ForallTM}[2]{\forall #1 \, #2}
124 \newcommand{\ExistsTM}[2]{\exists #1 \, #2}
125
126 % Variables, Ranges, and Predicates
127 \newcommand{\RNGTM}[1]{#1}
128 \newcommand{\SIMPRNGTM}[1]{#1}
129 \newcommand{\STEPRNGTM}[1]{#1}
130 \newcommand{\VARTM}[1]{#1}
131
132 % Definitions
133 \newcommand{\IffDefTM}[2]{\left(#1 :\iff #2\right)}
134 \newcommand{\EqualDefTM}[2]{\left(#1 := #2\right)}
135
136 % Annotations and Subscripts
137 \newcommand{\AnnotatedTM}[3]{#1_{#2}\left(#3\right)}
138 \newcommand{\SubscriptTM}[2]{#1_{#2}}
139
140 % Operations and Relations
141 \newcommand{\LessTM}[2]{#1 < #2}
142 \newcommand{\EqualTM}[2]{#1 = #2}
143 \newcommand{\SubsetEqualTM}[2]{#1 \subseteq #2}
144
145 % Domain≠specific Operations
146 \newcommand{\DomainOperationTM}[4]{#1_{#2}\left(#3, #4\right)}
147 \newcommand{\TupleTM}[2]{\left(#1, #2\right)}
148 \newcommand{\TupleOfTM}[2]{#1_{#2}}
149 \newcommand{\IntegerIntervalTM}[2]{[#1, #2]}
150
151 % Specific Mathematical Notations
152 \newcommand{\Mon}[1]{\text{Mon}\left[#1\right]}
153 \newcommand{\TimesTM}{\times}
154 \newcommand{\PlusTM}{+}
155
156 %% ≠≠≠
157 %% Theorema Symbols are defined as custom LaTeX commands here! (END)
158 %% ≠≠≠
159
160 % From Wolfram template for LaTeX
161 \newcommand{\mathsym}[1]{{}}
162 \newcommand{\unicode}[1]{{}}
163
164 \newcounter{mathematicapage}

A. Technical Documentation/Source Code 69

165 \begin{document}
166
167 % \input{}
168
169 \title{Theorema 2.0: A First Tour}
170 \author{}
171 \date{}
172 \maketitle
173
174 % Insert legend at the Parsing Entry point, if DocumentProcessingLevel is so specified
175 \begingroup \section*{} We consider proving , computing , and solving as the

three basic mathematical activities.\endgroup
176
177 \section{Proving}
178
179 \begingroup \section*{} We want to prove\endgroup
180
181 \begin{center}(\underset{x}{\forall}(P[x] \lor Q[x])) \land (\underset{y}{\forall}(P

[y] \Rightarrow Q[y])) \Leftrightarrow (\underset{x}{\forall}Q[x]) .\end{center}
182 \begingroup \section*{} To prove a formula like the above, we need to enter it in

the context of a Theorema environment.\endgroup
183
184 \EnvironmentWithFormat{proposition}{First Test, 2014}
185 \IffTM{ \AndTM{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{x}}}}{ \OrTM{ P[\VARTM{x}]}{

Q[\VARTM{x}]}}}{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{y}}}}{ \ImpliesTM{ P[\
VARTM{y}]}{ Q[\VARTM{y}]}}}}{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{x}}}}{ Q[\
VARTM{x}]}}\n\n\end{EnvironmentWithFormat}

186
187 \section{Computing}
188
189 \EnvironmentWithFormat{definition}{Lexical Ordering}
190 \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{a}}}{ \SIMPRNGTM{ \VARTM{b}}}}{ \IffDefTM{ \

AnnotatedTM{LessTM}{ \SubScriptTM{lex}}{ \VARTM{a}}{ \VARTM{b}}}{ \ExistsTM{ \
RNGTM{ \STEPRNGTM}}{ \AndTM{ \LessTM{ \SubscriptTM{ \VARTM{a}}{ \VARTM{i}}}{ \
SubscriptTM{ \VARTM{b}}{ \VARTM{i}}}}{ \ForallTM{ \RNGTM{ \STEPRNGTM}}{ \EqualTM
{ \SubscriptTM{ \VARTM{a}}{ \VARTM{j}}}{ \SubscriptTM{ \VARTM{b}}{ \VARTM{j
}}}}}}}}\n\n\end{EnvironmentWithFormat}

191
192 \EnvironmentWithFormat{definition}{Monomials}
193 \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{K}}}{ \SIMPRNGTM{ \VARTM{m2}}}}{ \EqualDefTM{

\DomainOperationTM{ Mon[\VARTM{K}]}{TimesTM}{ \VARTM{m1}}{ \VARTM{m2}}}{ \
TupleTM{ \DomainOperationTM{ \VARTM{K}}{TimesTM}{ \SubscriptTM{ \VARTM{m1}}{1}}{
\SubscriptTM{ \VARTM{m2}}{1}}}{ \TupleOfTM{ \RNGTM{ \STEPRNGTM}}{ \

DomainOperationTM{ \IntegerIntervalTM}{PlusTM}{ \SubscriptTM{ \SubscriptTM{ \
VARTM{m1}}{2}}{ \VARTM{i}}}{ \SubscriptTM{ \SubscriptTM{ \VARTM{m2}}{2}}{ \VARTM
{i}}}}}}}\n\n\end{EnvironmentWithFormat}

194
195 \section{Set Theory}
196
197 \EnvironmentWithFormat{definition}{subset}
198 \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{x}}}{ \SIMPRNGTM{ \VARTM{y}}}}{ \EqualDefTM{

\SubsetEqualTM{ \VARTM{x}}{ \VARTM{y}}}{ \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{z
}}}}{ \ImpliesTM{ \ElementTM{ \VARTM{z}}{ \VARTM{x}}}{ \ElementTM{ \VARTM{z}}{ \
VARTM{y}}}}}}\n\n\end{EnvironmentWithFormat}

199
200 \EnvironmentWithFormat{proposition}{transitivity of }
201 \ForallTM{ \RNGTM{ \SIMPRNGTM{ \VARTM{a}}}{ \SIMPRNGTM{ \VARTM{c}}}}{ \ImpliesTM{ \

A. Technical Documentation/Source Code 70

AndTM{ \SubsetEqualTM{ \VARTM{a}}{ \VARTM{b}}}{ \SubsetEqualTM{ \VARTM{b}}{ \
VARTM{c}}}}{ \SubsetEqualTM{ \VARTM{a}}{ \VARTM{c}}}}\n\n\end{
EnvironmentWithFormat}

202
203
204
205 \end{document}

See Appendix C for the PDF-rendering of this LaTeX-Code.

Appendix B

Supplementary Materials (Submission
Repository)

List of supplementary data submitted to the degree-granting institution for archival
storage (in ZIP format) including the FirstTour example used throughout this work
as final PDF rendering of the LaTeX-transformed Wolfram Language Notebook (see
Appendix A).

These documents are included in the final submission repository.

B.1 PDF Files
Path: /

main.pdf Bachelor thesis (complete document)

Path: /tma2tex
FirstTour.pdf Sample Transformation Document FirstTour (included

in thesis document as well)

B.2 Program Files
Path: /tma2tex and /tma2tex/res

*.wl, *.m Wolfram Language Code presented in this work and
printed in Appendix A

*.nb Wolfram Language Code designed to be displayed as an
interactive notebook in Wolfram Mathematica or an
online software version: FirstTour.nb as the sample
document tested with this project is the most relevant
and printed in Appendix A, but includes notebook
presentation information that makes it cumbersome to
read. Further .nb-files are in the repository and intended
to be displayed in Mathematica.

71

B. Supplementary Materials (Submission Repository) 72

*.tex Template, intermediary and final .tex files presented in
this work and printed in Appendix A

Path: /tma2tex/test
*.mt Wolfram Language Testing Framework files

Path: /tma2tex/.settings
*.prefs Wolfram Workbench/Eclipse settings file used for this

project

Appendix C

Sample Document FirstTour

The main sample document this project is tested with is included in its final LaTeX-
transformed and PDF-rendered output format: the .tex-file this document is rendered
from is printed in Appendix A and the original Wolfram Language notebook is included
in the submission (and online) repository detailed in Appendix B.

73

Theorema 2.0: A First Tour

We consider “proving”, “computing”, and “solving” as the three basic mathe-
matical activities.

1 Proving

We want to prove

(’
x
(P [x] ‚ Q[x])) · (’

y
(P [y] ∆ Q[y])) … (’

x
Q[x]).

To prove a formula like the above, we need to enter it in the context of a
Theorema environment.
Proposition : First Test, 2014

((’x (P [x] ‚ Q[x]) · ’y (P [y] æ Q[y])) ≈∆ ’x Q[x])

2 Computing
Definition : Lexical Ordering

’ab (LessTMlex (a) b : ≈∆ ÷ (ai < bi · ’ aj = bj))
Definition : Monomials

’Km2
!
Mon[K]T imesT M (m1, m2) :=

!
KT imesT M (m11, m21) ,[,P lusT M](m12i,m22i)

""

3 Set Theory
Definition : subset

’xy (x ™ y := ’z (zx æ zy))
Proposition : transitivity of

’ac ((a ™ b · b ™ c) æ a ™ c)

1

C. Sample Document FirstTour 74

Appendix D

Exposé: A Tree Pattern Function in
Mathematica

An exposé of the programming paradigms highlighted in Chapter 2 is included with this
thesis work: It was produced as part of the companion seminar class, ”Wissenschaftliches
Arbeiten,“ i.e. Scientific Research and Writing, and serves to deliver some additional
Theory about programming in WL, separately from the project focus of the main work.
The author hopes this aids the interested reader and would like to point out that
the document is interesting formally in that it was produced inside a Mathematica
notebook, so that the cells containing text and executable WL code are of equal order
inside an overall WL notebook expression, as outlined in 1, concerning WL expressions
as document representation: as opposed to this project’s LATEXtransformation, or the
native transformation also referenced in 1, this format represents another way, the non-
LATEX, Mathematica-native PDF-export, for making available WL notebook content.

75

Exposé: A Tree Pattern Function in
Mathematica
For: “Wissenschaftliches Arbeiten,” Software Engineering at
Fachhochschule Oberösterreich, Campus Hagenberg.

The present author has implemented the following set of Wolfram Language functions in a recent
Wolfram Community project (Heseltine, 2023) and would like to expand upon the underlying
concepts and the language used, in an effort to further his own understanding and present a
helpful guide to the language and its functional programming paradigm support.

In [19] := proofID[Grid[{___, {ID, id_}, ___}, ___]] := id;

subproofs[
Grid[{___, {Proofs, OpenerView[{Arguments, Column[subproofs_, ___]}, ___]}, ___},
___]] := subproofs;

subproofs[proof_] := {};

getLeanTree[proof_] := Tree[proofID[proof], getLeanTree /@ subproofs[proof],
TreeElementLabelStyle � All � Directive[White, 16, FontFamily � "Times New Roman"],
TreeElementStyle � All � Directive[EdgeForm[Black], RGBColor["#B6094A"]]]

An exposé of the concepts follows, drawing on all three functions (one function is overloaded to
produce two forms of the same function), but first an introduction of both the problem space and
language will be helpful. The complete code base is available as a G itHub repository.

The Problem Space
The objective is to extract a tree data structure in the form of certain integer mathematical proof
IDs and the related children IDs from a grid expression in Wolfram Language. The grid is interpreted
by Mathematica but comes from an external program called LEAN, an automated and interactive
theorem prover. LEAN and the particular implementation details of processing the tree can be
treated as a black box for the purposes of this study.

The Wolfram Language
Wolfram Research (2023) describes the language on a high level like this: “The Wolfram Language is
a highly developed knowledge-based language that unifies a broad range of programming
paradigms and uses its unique concept of symbolic programming to add a new level of flexibility to
the very concept of programming.” Also, on the point of functional programming: “Functional
programming is a highly developed and deeply integrated core feature of the Wolfram Language,

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 76

made dramatically richer and more convenient through the symbolic nature of the language.”

The functional aspects of Wolfram Language to the point needed to understand the function of
interest will be of particular import here, but less so the symbolic side. Mathematica is the concrete
programming environment used to explore the concepts with examples.

Lists and Replacements
Going back to our object of interest, here is the first of the set of functions we are presently
studying.

I n [] : = proofID[Grid[{___, {ID, id_}, ___}, ___]] := id;

They use lists (demarcated with curly brackets, here in a nested fashion) in constructing a pattern,
which will be discussed in a later section, but lists can also be generated: Lists are central, general
objects in the Wolfram Language since they can be made to represent other objects.

Internally, they are, of course, functions.

I n [] : = FullForm[{1, 2, 3}]
Ou t [] / / F u l l F o rm=

List[1, 2, 3]

Starting with list creation utilities, here are some helpful functions for handling lists.

I n [] : = Range[3]
Ou t [] =

{1, 2, 3}

This is the same as:

I n [] : = Range[1, 3, 1]
Ou t [] =

{1, 2, 3}

Compare this to Table, which takes a Wolfram Language iterator in the form {i, imin, imax, step}:

I n [] : = Table[2 k, {k, 1, 10, 2}]
Ou t [] =

{2, 6, 10, 14, 18}

As with Range, imin and step can be omitted (set to 1).

One might like to change the display orientation, here using “%” to access the evaluation immedi-
ately prior:

I n [] : = Column[%]
Ou t [] =

2
6
10
14
18

Matrices are similarly a matter of display, of nested lists. A construction using two iterators might
look as follows.

2 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 77

I n [] : = Table[i * j, {i, 1, 3}, {j, 1, 4}] // MatrixForm
Ou t [] / /Ma t r i x F o rm=

1 2 3 4
2 4 6 8
3 6 9 12

It is important to note the difference to this expression reversing the order of the iterators.

Table[i * j, {j, 1, 4}, {i, 1, 3}] // MatrixForm (* // TableForm *)

Ou t [] / /Ma t r i x F o rm=

1 2 3
2 4 6
3 6 9
4 8 12

That is, the first iterator determines the number of rows, in the 2D context. Another way to say this
is that the inner iterator determines the value of the outer iterator. The mathematical expression
being evaluated is, of course, commutative, however.

For measuring lists, the Length-Function gives the outermost dimension, whereas Dimensions[]
gives all dimensions of nested lists. The number of dimensions is given by ArrayDepth[].

For testing and sampling lists the following functions are available. Position[list, element] gives the
(list of) index positions at which element sits, whereas Select[list, predicate] tests elements of the
list against predicate, sampling those elements that satisfy, say, even parity with EvenQ. Given a
position, elements can be extracted using Part[] or its short form in double-square-brackets nota-
tion, here as a matrix-example.

I n [] : = Table[ai,j, {i, 3}, {j, 3}] // MatrixForm
Ou t [] / /Ma t r i x F o rm=

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

I n [] : = %�2, 1�
Ou t [] =

a2,1

Take[] is similar to Part[] but allows sampling consecutively placed elements in a list.

This section ends with an analysis of the “_”-character to symbolize any other Mathematica object
(Wolfram Language expressions), which is useful for patterns in general, and particularly, the
proofID function at the beginning of this section. The crucial difference is between two under-
scores, “__” or BlankSequence, standing for any sequence of one or more expressions, and three
underscores, “___” or BlankNullSequence, which also allows zero such expressions.

The following example, taken from Wolfram Research (2023), makes the limitation of BlankSe-
quence clear.

I n [] : = f[x__] := Length[{x}]

I n [] : = {f[x, y, z], f[]}
Ou t [] =

{3, f[]}

expose-tree-pattern-function.nb 3

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 78

Contrast this with use of the BlankNullSequence:

I n [] : = f2[x___] := p[x, x]

I n [] : = {f2[], f2[1], f2[1, a]}
Ou t [] =

{p[], p[1, 1], p[1, a, 1, a]}

Blank (“_”) is the most limited pattern character in that it can stand for any Wolfram Language
Expression, but only exactly one such expression.

I n [] : = f3[x_] := "evaluated"

I n [] : = {f3[], f3[1], f3[1, "a"]}
Ou t [] =

{f3[], evaluated, f3[1, a]}

Functional Programming
With lists there is now a background in place to consider Wolfram Language’s functional aspects in
more detail. For a definition, I refer to the Mathematica Cookbook (Mangano, 2010, p. 31): “All
functional languages emphasize the evaluation of expressions to produce values rather than
commands or statements that are executed for their side effects.” Since Mathematica also allows
for functions like Do[], the language is not purely functional, instead supporting at least also the
procedural paradigm. The focus here however is functional programming by a given example, not a
comparison of paradigms or more analysis of the functional one.

With this, the following core functional programming “primitives” are summed up in a helpful
reference table in (Mangano, 2010, p. 26) and will lead to a discussion of the relative idioms and
their application.

Out[107]=

Function Operator Description
Map[f, expr] /@ Return the list that results from

executing f on each element of an expr

Apply[f, expr] @@ Return the result of replacing
the head of a list with function f

Apply[f, expr, {1}] @@@ Applies f at level 1
inside list. In other words,
replace the head of all elements

Fold[f, x, {a1, a2, a3}] N/A If list hast length 0,
return x, otherwise return
f[f[f[x, a1], a2], a3]...

FoldList[f, x, {a1, a2, a3, ...}] N/A Return the list {x, f[x,
a1], f[f[x, a1], a2], ...}

Nest[f, expr, n] N/A Return the list f[f[f[...f[expr]...]]]
(i.e. f applied n times)

NestList[f, expr, n] N/A Return the list {x, f[expr], f[f[expr]],
...} where f repeats up to n times

This also covers almost all of the sort-hand notation after blanks, where ampersand (“&”) and hash
(“#”) still need mentioning: this ties in perfectly with the topic of functional operations and goes to

4 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 79

show that indeed, functional is at the heart of the language, since the short-hand notation offered
caters to the paradigm. This example illustrates the usages, in so-called pure functions (lambda
expressions), starting with the named-function counter-example.

In [14] := h[x_] := f[x] + g[x]

Combine this with Map[] in the following way.

In [15] := Map[h, {a, b, c}]
Out[15]=

{f[a] + g[a], f[b] + g[b], f[c] + g[c]}

The pure-function alternative is written as follows.

In [16] := Map[f[#] + g[#] &, {a, b, c}]
Out[16]=

{f[a] + g[a], f[b] + g[b], f[c] + g[c]}

Here ampersand demarcates the end of the function expression, and hash marks the arguments.
The non-short-hand version is:

In [18] := Map[Function[x, f[x] + g[x]], {a, b, c}]
Out[18]=

{f[a] + g[a], f[b] + g[b], f[c] + g[c]}

I refer to the Functional Operators Tutorial (Wolfram Research, 2023) for the minor details includ-
ing, for example, the modifications of the hash operator, such as #n or ##. (Mangano, 2010) offer the
helpful notion of idioms in this conext, where the functions Map[] and Apply[] that we have already
seen present one such idiom, useful for summing sublists: here is the relevant example (p. 33), in
short-hand.

In [23] := Plus @@ # & /@ {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}
Out[23]=

{6, 30, 42}

Plus is applied and mapped to each element, here each sublist, hence this would be the Map-Apply
idiom. The same can be accomplished in other ways.

In [24] := Plus @@@ {{1, 2, 3}, {4, 5, 6, 7, 8}, {9, 10, 11, 12}}
Out[24]=

{6, 30, 42}

(Mangano, 2010) goes on to present further use cases and appropriate idioms in the functional
programming chapter of his book. The functional programming elements discussed so far allow us
to analyze this part of the code, the third of the three functions, we are investigating:

In [25] := getLeanTree[proof_] := Tree[proofID[proof], getLeanTree /@ subproofs[proof],
TreeElementLabelStyle � All � Directive[White, 16, FontFamily � "Times New Roman"],
TreeElementStyle � All � Directive[EdgeForm[Black], RGBColor["#B6094A"]]]

There are a lot of options here, concerned with output style. (Something like the following gets
generated as the final return value: the presentation is controlled by the options.)

expose-tree-pattern-function.nb 5

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 80

Ou t [] =

24
0

23
1

22
2

21
3

20
4

19

8
5

7
6 3

5

18 17
10

16
11

15

13
12 3

11
14

10

4

There is also a recursive element here, which we will ignore just for the moment, in fact we want to
focus in on just this part:

In [106] :=

getLeanTree /@ subproofs[proof]

The "/@" - Mapping of the (recursively called) function getLeanTree[] is the Map - Apply idiom in
action, where the function is applied to the output of another function subproofs[], which is a list,
with usually two or three elements, behind the scenes .

I n [] : = subproofs[leanProof]
Ou t [] =

�
Goal p : �
ID 0

Rule Assumption
,

Goal � {m n : �}, nat.prime p � p � m ^ n � p � m
ID 23

Rule �I

Proofs Arguments

Goal m : �
ID 1
Rule Assumption

Goal � {n : �}, nat.prime p � p � m ^ n � p � m
ID 22

Rule �I

Proofs Arguments

�

Rule-based Programming
The grid structures presented above immediately bring us to pattern-oriented programming in
Wolfram Language and we move on to the second function of our initial three to investigate this
aspect.

In [108] :=

subproofs[
Grid[{___, {Proofs, OpenerView[{Arguments, Column[subproofs_, ___]}, ___]}, ___},
___]] := subproofs;

subproofs[proof_] := {};

To clear up a technical detail: the opener view is the collapsable arrow or triangle shape leading to
more text display, here in a nested form when viewing in a Mathematica notebook. In a way, the
pattern to tree functions are all about this un-collapsing of the grid structure, representing a mathe-

6 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 81

matical proof in Lean. For completeness, here is another level of the grid expanded and viewable in
PDF-file-format to illustrate the functionality. (This structure will become important again once we
look at recursion.)

Ou t [] =

�
Goal p : �
ID 0

Rule Assumption
,

Goal � {m n : �}, nat.prime p � p � m ^ n � p � m
ID 23

Rule �I

Proofs Arguments

Goal m : �
ID 1
Rule Assumption

Goal � {n : �}, nat.prime p � p � m ^ n � p � m
ID 22

Rule �I

Proofs Arguments

Goal n : �
ID 2

Rule Assumption

Goal nat.prime p � p � m ^ n � p � m
ID 21

Rule �I

Proofs Arguments

�

With this out of the way, rules are the essential building block in this chapter: “Everything that the
Wolfram Language does can be thought of as derived from its ability to apply general transforma-
tion rules to arbitrary symbolic expressions” (Wolfram Research, 2023). They can be used for string
operations like so, where the arrow gives the replacement rule.

In [115] :=

StringReplace["Mathematica is multi-paradigm", {"Mathematica" � "Wolfram Language"}]
Out[115]=

Wolfram Language is multi-paradigm

Here is short-hand notation and a useful list item swap rule:
In [117] :=

{{�, 1}, {�, 2}, {�, 3}} /. {x_, y_} � {y, x}
Out[117]=

{{1, �}, {2, �}, {3, �}}

At this point we also circle back to the blank-notation for patterns: The above example is taken
from (Wellin, p. 150), and to highlight the concept’s importance and its relationship to lists: “Rule-
based programming is such a useful construct for manipulating lists and arbitrary expressions that
no user of Mathematica should be without a working knowledge of this paradigm.” (Ibid.)

The following built-in functions help to implement the paradigm as discussed so far: Here a generic
test using blanks.

In [118] :=

MatchQ["Mathematica", _]

Out[118]=

True

expose-tree-pattern-function.nb 7

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 82

And here the pattern matching function already discussed in terms of lists, the first of our three
functions, implementing a more complex pattern matching routine.

I n [] : = proofID[Grid[{___, {ID, id_}, ___}, ___]] := id;

Combine this pattern with the built-on Cases[] to extract the matches and compile them to a list,
given appropriate input.

In [120] :=

pattern = Grid[{___, {ID, id_}, ___}, ___];

In [127] :=

Cases[subproofs[leanProof], pattern]
Out[127]=

�
Goal p : �
ID 0

Rule Assumption
,

Goal � {m n : �}, nat.prime p � p � m ^ n � p � m
ID 23

Rule �I

Proofs Arguments

�

In this case, Cases[] simply returns the input list, because all elements match. A more useful applica-
tion of cases might be:

In [129] :=

Cases[{"here is a diverse list", -2, 2.0, 0, -0, -0.0, -0.1}, _?Negative]
Out[129]=

{-2, -0.1}

Here the negative-test (a predicate function, instead of a pattern) is applied, where Negative[]
returns true in the appropriate case and false (or unevaluated, if the predicate is not applicable) in
all others.

In [132] :=

Negative /@ {-2, -0.1}
Out[132]=

{True, True}

In [134] :=

Negative /@ {"here is a diverse list", 2.0, 0, -0, -0.0}
Out[134]=

{Negative[here is a diverse list], False, False, False, False}

On the topic of predicates, pure functions can also be used to implement them, here in combina-
tion with a test for the head of an element (testing if it is a list).

In [139] :=

MatchQ[{1, 2, 3}, _List?(Length[#] > 2 &)]
Out[139]=

True

Finally, the second of our functions does the same thing as the first, but for an even more complex
pattern (again using BlankSequences liberally).

In [140] :=

subproofs[
Grid[{___, {Proofs, OpenerView[{Arguments, Column[subproofs_, ___]}, ___]}, ___},
___]] := subproofs;

subproofs[proof_] := {};

8 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 83

But with one caveat of a base case for a later recursion, in the form of an overloaded function
(subproofs[]) taking any possible pattern and binding it to the variable proof, but returning an
empty list as a fixed value: this leads to the final topic to be discussed in this analysis, recursion.

Recursion
We now can put the functions together to explain the functionality in terms of recursion, another
paradigm implemented in Wolfram Language. This is the set of functions we were considering:

proofID[Grid[{___, {ID, id_}, ___}, ___]] := id;
(* basically an extractor-function, using patterns *)

subproofs[Grid[{___,
{Proofs, OpenerView[{Arguments, Column[subproofs_, ___]}, ___]}, ___}, ___]] :=

subproofs; (* Same as above, but with more complex patterns *)

subproofs[proof_] := {}; (* Stopping condition preparing the recursion *)

getLeanTree[proof_] := Tree[proofID[proof], getLeanTree /@ subproofs[proof],
TreeElementLabelStyle � All � Directive[White, 16, FontFamily � "Times New Roman"],
TreeElementStyle � All � Directive[EdgeForm[Black], RGBColor["#B6094A"]]]

(* Putting it all together now, plus some options for styling the output *)

One note on Proofs and Arguments: these are simply the names of heads in the proof-grid-structure
that is the input for the main function, getLeanTree[].

Recursion is of course a call of a function to itself, which is seen here in getLeanTree[], as the func-
tion constructs a tree with an integer delivered by proofID as the parent and the children as outputs
from the recursive call mapped to the proofs returned by subproofs[]. Say two children are
returned: the next recursion step makes a tree out of the “child proofs” (the “sub-proofs”) and
again extracts the ids and makes the recursive call, now implementing the branching of the tree at
the second level.

The fact that subproofs[] is is overloaded to produce an empty list when no relevant pattern is
present ensures that in the recursive mapping of getLeanTree[] eventually an empty list is mapped
to:

In [143] :=

Tree["id", {}]

Out[143]=

id

A leaf-node is reached, here corresponding to a mathematical axiom which in turn does not depend
on other axioms: The recursion stops, a base case is reached in the sense that a tree with empty
children is defined as a leaf, though the actual empty list is returned not by the recursing function
(getLeanTree[]) but by another (subproofs[]).

This section closes with a more canonical example of recursion with a direct base case, the
Fibonacci sequence, and an application to lists, showing how lists are once again the essential
auxiliary concept.

expose-tree-pattern-function.nb 9

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 84

In [157] :=

f[1] = 1; (* Fibonacci *)

f[2] = 1;
f[n_] := f[n - 2] + f[n - 1] /; n > 2

It turns out specific rules are looked up before more general rules, which is helpful for implement-
ing recursion, since we can omit the non-base condition after simply defining the base cases.

In [163] :=

f[n_] := f[n - 2] + f[n - 1]

In [164] :=

Table[f[i], {i, 15}]
Out[164]=

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}

The following helpful function lets us analyze what is being evaluated in what order; this can be
especially helpful when it comes to recursion, often implementing many steps in relatively sparse
syntax.

In [169] :=

TracePrint[f[3]]

10 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 85

f[3]

f

3

RuleCondition[$ConditionHold[$ConditionHold[f[3 - 2] + f[3 - 1]]], 3 > 2]

RuleCondition

3 > 2

Greater

3

2

True

RuleCondition[$ConditionHold[$ConditionHold[f[3 - 2] + f[3 - 1]]], True]

$ConditionHold[$ConditionHold[f[3 - 2] + f[3 - 1]]]

$ConditionHold

f[3 - 2] + f[3 - 1]

Plus

f[3 - 2]

f

3 - 2

Plus

3

-2

1

f[1]

1

f[3 - 1]

f

3 - 1

Plus

3

-1

2

f[2]

1

1 + 1

2
Out[169]=

2

The final (simple!) list-recursion example echoes getLeanTree[] in the way it requires an empty list
base case and recursively folds into itself.

expose-tree-pattern-function.nb 11

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 86

In [170] :=

l[list_] := l[Rest[list]] + 1 (* length of a list is rest (tail) + 1 *)

l[{}] := 0

In [172] :=

l[{1, 2, 3, 4, 5}]
Out[172]=

5

The observation here is that a simple problem can actually appear more complex, simply because
various paradigms and potentially some complex patterns are being mixed at the same time.

Limitations and Summary
This study did not cover numerics, graphics programming, front-end programming, or writing
packages, all major topics related to the current discussion: An Introduction to Programming with
Mathematica (2005, Wellin et al.) completes the picture at the intended overview level of analysis,
of exactly these missing topics. The focus here has been on one particular example, solving one
problem, in Wolfram Language; it is involved enough to be viewed in context of the major themes
chosen after introducing the language in broad strokes. These themes were lists; functional pro-
gramming; rule-based programming as the particularly helpful approach in this situation; and
recursion, which we could not have easily done without.

References
Heseltine, J. (2023) Empirical metamathematics: extending the Lean-to-Mathematica bridge. Wol-
fram Community. Available at: https://community.wolfram.com/groups/-/m/t/2957419 (Accessed:
26 July 2023).
Mangano, S. (2010) Mathematica Cookbook. Sebastopol, CA: O’Reilly Media, Inc.
Wellin, P. R. (2005) An Introduction to Programming in Mathematica. Cambridge, UK: Cambridge
University Press.
Wolfram Research (2023) Wolfram Language & System Documentation Center. Available at: http-
s://reference.wolfram.com/language/ (Accessed: 23 July 2023).

12 expose-tree-pattern-function.nb

Printed by Wolfram Mathematica Student Edition

D. Exposé: A Tree Pattern Function in Mathematica 87

References

Literature

[1] $Failed—Wolfram Language Documentation. url: https://reference.wolfram.com
/language/ref/$Failed.html (visited on 02/28/2024) (cit. on p. 46).

[2] American Mathematical Society. en. url: https://www.ams.org/arc/resources/am
slatex-about.html (visited on 04/02/2024) (cit. on p. 5).

[3] Begin—Wolfram Language Documentation. url: https://reference.wolfram.com/l
anguage/ref/Begin.html (visited on 04/09/2024) (cit. on p. 17).

[4] BlankNullSequence—Wolfram Language Documentation. url: https://reference.w
olfram.com/language/ref/BlankNullSequence.html (visited on 02/24/2024) (cit. on
p. 2).

[5] Block—Wolfram Language Documentation. url: https://reference.wolframcloud.c
om/language/ref/Block.html (visited on 02/24/2024) (cit. on p. 36).

[6] BoxData—Wolfram Language Documentation. url: https://reference.wolfram.co
m/language/ref/BoxData.html#:≥:text=BoxData%20is%20typically%20used%20as
,need%20to%20be%20used%20directly. (visited on 04/02/2024) (cit. on p. 3).

[7] Bruno Buchberger. ‘Mathematica as a Rewrite Language’ (Nov. 1996) (cit. on
pp. 1, 2, 9).

[8] Building Large Software Systems in the Wolfram Language—Wolfram Language
Documentation. url: https://reference.wolfram.com/language/tutorial/BuildingL
argeSoftwareSystemsInTheWolframLanguage.html (visited on 04/09/2024) (cit. on
pp. 15, 17).

[9] Cell > Show Expression—Wolfram Language Documentation. url: https ://ref
erence .wolfram . com/ language/ ref /menuitem/ShowExpression . html (visited on
04/02/2024) (cit. on p. 3).

[10] Cell—Wolfram Language Documentation. url: https://reference.wolfram.com/la
nguage/ref/Cell.html (visited on 04/02/2024) (cit. on p. 3).

[11] City—Wolfram Language Documentation. url: https://reference.wolfram.com/la
nguage/ref/entity/City.html (visited on 04/02/2024) (cit. on p. 9).

[12] CompoundExpression—Wolfram Language Documentation. url: https : / / refer
ence . wolframcloud . com / language / ref / CompoundExpression . html (visited on
02/24/2024) (cit. on pp. 2, 36).

88

https://reference.wolfram.com/language/ref/$Failed.html
https://reference.wolfram.com/language/ref/$Failed.html
https://www.ams.org/arc/resources/amslatex-about.html
https://www.ams.org/arc/resources/amslatex-about.html
https://reference.wolfram.com/language/ref/Begin.html
https://reference.wolfram.com/language/ref/Begin.html
https://reference.wolfram.com/language/ref/BlankNullSequence.html
https://reference.wolfram.com/language/ref/BlankNullSequence.html
https://reference.wolframcloud.com/language/ref/Block.html
https://reference.wolframcloud.com/language/ref/Block.html
https://reference.wolfram.com/language/ref/BoxData.html#:~:text=BoxData%20is%20typically%20used%20as,need%20to%20be%20used%20directly.
https://reference.wolfram.com/language/ref/BoxData.html#:~:text=BoxData%20is%20typically%20used%20as,need%20to%20be%20used%20directly.
https://reference.wolfram.com/language/ref/BoxData.html#:~:text=BoxData%20is%20typically%20used%20as,need%20to%20be%20used%20directly.
https://reference.wolfram.com/language/tutorial/BuildingLargeSoftwareSystemsInTheWolframLanguage.html
https://reference.wolfram.com/language/tutorial/BuildingLargeSoftwareSystemsInTheWolframLanguage.html
https://reference.wolfram.com/language/ref/menuitem/ShowExpression.html
https://reference.wolfram.com/language/ref/menuitem/ShowExpression.html
https://reference.wolfram.com/language/ref/Cell.html
https://reference.wolfram.com/language/ref/Cell.html
https://reference.wolfram.com/language/ref/entity/City.html
https://reference.wolfram.com/language/ref/entity/City.html
https://reference.wolframcloud.com/language/ref/CompoundExpression.html
https://reference.wolframcloud.com/language/ref/CompoundExpression.html

References 89

[13] Curated Computational Data in the Wolfram Knowledgebase. en. url: https://w
ww.wolframalpha.com (visited on 04/02/2024) (cit. on p. 9).

[14] End—Wolfram Language Documentation. url: https://reference.wolfram.com/la
nguage/ref/End.html (visited on 04/09/2024) (cit. on p. 17).

[15] EndPackage—Wolfram Language Documentation. url: https://reference.wolfram
.com/language/ref/EndPackage.html (visited on 04/09/2024) (cit. on p. 17).

[16] Expression Structure—Wolfram Language Documentation. url: https://referenc
e.wolfram.com/language/guide/ExpressionStructure.html (visited on 04/02/2024)
(cit. on p. 10).

[17] Expressions—Wolfram Language Documentation. url: https ://reference.wolfra
m.com/language/tutorial/Expressions .html#:≥ : text=Expressions%20in%20the
%20Wolfram%20System, 6%2D1%5D%20performs%20factorization. (visited on
04/02/2024) (cit. on pp. 2, 3).

[18] Failure—Wolfram Language Documentation. url: https://reference.wolfram.com
/language/ref/Failure.html (visited on 02/28/2024) (cit. on pp. 46, 47).

[19] Find the Underlying Box Structure of a Formatted Expression—Wolfram Language
Documentation. url: https://reference.wolfram.com/language/workflow/FindThe
UnderlyingBoxStructureOfAFormattedExpression.html (visited on 04/02/2024) (cit.
on p. 3).

[20] FindEquationalProof—Wolfram Language Documentation. url: https://referenc
e.wolfram.com/language/ref /FindEquationalProof .html (visited on 04/05/2024)
(cit. on p. 12).

[21] Functional Operations—Wolfram Language Documentation. url: https : / / refe
rence . wolfram . com / language / tutorial / FunctionalOperations . html (visited on
04/04/2024) (cit. on p. 18).

[22] G. Mayrhofer, S. Saminger % W. Winsteiger. ‘Theorema’. In: The Seventeen
Provers of the World. Springer. url: https://www.cs.ru.nl/≥freek/comparison
/comparison.pdf (visited on 04/05/2024) (cit. on pp. 11–14).

[23] Get—Wolfram Language Documentation. url: https://reference.wolfram.com/lan
guage/ref/Get.html (visited on 04/09/2024) (cit. on p. 17).

[24] GitHub - windsteiger/Theorema: Theorema: A System for Automated Reasoning
(Theorem Proving) and Automated Theory Exploration based on Mathematica.
url: https://github.com/windsteiger/Theorema (visited on 04/02/2024) (cit. on
p. 11).

[25] Head—Wolfram Language Documentation. url: https://reference.wolfram.com/la
nguage/ref/Head.html (visited on 04/02/2024) (cit. on p. 10).

[26] High–Level Functions: New in Wolfram Language 12. en. url: https://www.wolfr
am.com/language/12/built-in-interface-to-unity-game-engine/high-level-functions
.html?product=language (visited on 04/10/2024) (cit. on p. 19).

[27] https://www3.risc.jku.at/research/theorema/software/. url: https://www3.risc.jk
u.at/research/theorema/software/ (visited on 04/05/2024) (cit. on p. 11).

https://www.wolframalpha.com
https://www.wolframalpha.com
https://reference.wolfram.com/language/ref/End.html
https://reference.wolfram.com/language/ref/End.html
https://reference.wolfram.com/language/ref/EndPackage.html
https://reference.wolfram.com/language/ref/EndPackage.html
https://reference.wolfram.com/language/guide/ExpressionStructure.html
https://reference.wolfram.com/language/guide/ExpressionStructure.html
https://reference.wolfram.com/language/tutorial/Expressions.html#:~:text=Expressions%20in%20the%20Wolfram%20System,6%2D1%5D%20performs%20factorization.
https://reference.wolfram.com/language/tutorial/Expressions.html#:~:text=Expressions%20in%20the%20Wolfram%20System,6%2D1%5D%20performs%20factorization.
https://reference.wolfram.com/language/tutorial/Expressions.html#:~:text=Expressions%20in%20the%20Wolfram%20System,6%2D1%5D%20performs%20factorization.
https://reference.wolfram.com/language/ref/Failure.html
https://reference.wolfram.com/language/ref/Failure.html
https://reference.wolfram.com/language/workflow/FindTheUnderlyingBoxStructureOfAFormattedExpression.html
https://reference.wolfram.com/language/workflow/FindTheUnderlyingBoxStructureOfAFormattedExpression.html
https://reference.wolfram.com/language/ref/FindEquationalProof.html
https://reference.wolfram.com/language/ref/FindEquationalProof.html
https://reference.wolfram.com/language/tutorial/FunctionalOperations.html
https://reference.wolfram.com/language/tutorial/FunctionalOperations.html
https://www.cs.ru.nl/~freek/comparison/comparison.pdf
https://www.cs.ru.nl/~freek/comparison/comparison.pdf
https://reference.wolfram.com/language/ref/Get.html
https://reference.wolfram.com/language/ref/Get.html
https://github.com/windsteiger/Theorema
https://reference.wolfram.com/language/ref/Head.html
https://reference.wolfram.com/language/ref/Head.html
https://www.wolfram.com/language/12/built-in-interface-to-unity-game-engine/high-level-functions.html?product=language
https://www.wolfram.com/language/12/built-in-interface-to-unity-game-engine/high-level-functions.html?product=language
https://www.wolfram.com/language/12/built-in-interface-to-unity-game-engine/high-level-functions.html?product=language
https://www3.risc.jku.at/research/theorema/software/
https://www3.risc.jku.at/research/theorema/software/

References 90

[28] IntelliJ IDEA – the Leading Java and Kotlin IDE. en. url: https://www.jetbrain
s.com/idea/promo/ (visited on 02/24/2024) (cit. on p. 7).

[29] Introduction to Dynamic—Wolfram Language Documentation. url: https://ref
erence .wolfram.com/language/tutorial/ IntroductionToDynamic .html (visited on
04/05/2024) (cit. on pp. 5, 12).

[30] LaTeX Project Team. url: https://www.latex-project.org/about/team/ (visited
on 04/02/2024) (cit. on pp. 4, 5).

[31] LaTeX Project Team. url: https://www.latex-project.org/about/team/#frank-mi
ttelbach (visited on 04/02/2024) (cit. on p. 4).

[32] MakeBoxes—Wolfram Language Documentation. url: https://reference.wolfram
.com/language/ref/MakeBoxes.html (visited on 07/20/2024) (cit. on p. 31).

[33] Mircea Marin and Florina Piroi. ‘Rule-Based Programming with Mathematica’.
en () (cit. on pp. 19–21).

[34] Message—Wolfram Language Documentation. url: https://reference.wolfram.co
m/language/ref/Message.html (visited on 02/24/2024) (cit. on p. 47).

[35] Michael George. First order logic, Gödel’s theorem (CS 2800, Spring 2017). Aug.
2024. url: https://www.cs.cornell.edu/courses/cs2800/2017sp/lectures/lec41-gode
l.html (visited on 08/26/2024) (cit. on p. 10).

[36] Misc. Quaternion. en. Page Version ID: 1235436136. July 2024. url: https://e
n.wikipedia .org/w/index .php?title=Quaternion&oldid=1235436136 (visited on
08/26/2024) (cit. on p. 3).

[37] Module: Create a scoping construct for local variables—Wolfram Documentation.
url: https://reference.wolframcloud.com/language/ref /Module.html (visited on
02/24/2024) (cit. on p. 36).

[38] Namespace Management—Wolfram Language Documentation. url: https ://ref
erence . wolfram . com / language / guide / NamespaceManagement . html (visited on
04/09/2024) (cit. on p. 17).

[39] Needs—Wolfram Language Documentation. url: https://reference.wolfram.com/l
anguage/ref/Needs.html (visited on 04/09/2024) (cit. on p. 17).

[40] Notebook—Wolfram Language Documentation. url: https://reference.wolfram.co
m/language/ref/Notebook.html (visited on 04/02/2024) (cit. on p. 3).

[41] Package Development—Wolfram Language Documentation. url: https://referenc
e.wolfram.com/language/guide/PackageDevelopment.html (visited on 04/09/2024)
(cit. on p. 17).

[42] Planet—Wolfram Language Documentation. url: https://reference.wolfram.com
/language/ref/entity/Planet.html (visited on 04/02/2024) (cit. on p. 9).

[43] Procedural Programming—Wolfram Language Documentation. url: https ://ref
erence . wolfram . com / language / guide / ProceduralProgramming . html (visited on
04/09/2024) (cit. on p. 18).

[44] ProofObject—Wolfram Language Documentation. url: https://reference.wolfram
.com/language/ref/ProofObject.html (visited on 04/05/2024) (cit. on p. 12).

https://www.jetbrains.com/idea/promo/
https://www.jetbrains.com/idea/promo/
https://reference.wolfram.com/language/tutorial/IntroductionToDynamic.html
https://reference.wolfram.com/language/tutorial/IntroductionToDynamic.html
https://www.latex-project.org/about/team/
https://www.latex-project.org/about/team/#frank-mittelbach
https://www.latex-project.org/about/team/#frank-mittelbach
https://reference.wolfram.com/language/ref/MakeBoxes.html
https://reference.wolfram.com/language/ref/MakeBoxes.html
https://reference.wolfram.com/language/ref/Message.html
https://reference.wolfram.com/language/ref/Message.html
https://www.cs.cornell.edu/courses/cs2800/2017sp/lectures/lec41-godel.html
https://www.cs.cornell.edu/courses/cs2800/2017sp/lectures/lec41-godel.html
https://en.wikipedia.org/w/index.php?title=Quaternion&oldid=1235436136
https://en.wikipedia.org/w/index.php?title=Quaternion&oldid=1235436136
https://reference.wolframcloud.com/language/ref/Module.html
https://reference.wolfram.com/language/guide/NamespaceManagement.html
https://reference.wolfram.com/language/guide/NamespaceManagement.html
https://reference.wolfram.com/language/ref/Needs.html
https://reference.wolfram.com/language/ref/Needs.html
https://reference.wolfram.com/language/ref/Notebook.html
https://reference.wolfram.com/language/ref/Notebook.html
https://reference.wolfram.com/language/guide/PackageDevelopment.html
https://reference.wolfram.com/language/guide/PackageDevelopment.html
https://reference.wolfram.com/language/ref/entity/Planet.html
https://reference.wolfram.com/language/ref/entity/Planet.html
https://reference.wolfram.com/language/guide/ProceduralProgramming.html
https://reference.wolfram.com/language/guide/ProceduralProgramming.html
https://reference.wolfram.com/language/ref/ProofObject.html
https://reference.wolfram.com/language/ref/ProofObject.html

References 91

[45] Real-Time 3D Development Platform & Editor. en. url: https://unity.com/produ
cts/unity-engine (visited on 04/10/2024) (cit. on p. 19).

[46] Scoping Constructs—Wolfram Language Documentation. url: https://reference
.wolfram.com/language/guide/ScopingConstructs .html (visited on 04/09/2024)
(cit. on p. 17).

[47] Software. en-US. url: https://risc.jku.at/software/ (visited on 04/03/2024) (cit.
on p. 1).

[48] Stylesheets—Wolfram Language Documentation. url: https://reference.wolfram.c
om/language/guide/Stylesheets.html (visited on 04/05/2024) (cit. on p. 12).

[49] Suppress the Output of a Computation—Wolfram Language Documentation. url:
https://reference.wolfram.com/language/howto/SuppressTheOutputOfAComputati
on.html (visited on 04/03/2024) (cit. on p. 2).

[50] TestObject—Wolfram Language Documentation. Sept. 2024. url: https://refere
nce.wolfram.com/language/ref/TestObject.html (visited on 09/21/2024) (cit. on
p. 48).

[51] The GNU General Public License v3.0 - GNU Project - Free Software Foundation.
url: https://www.gnu.org/licenses/gpl-3.0.en.html (visited on 04/10/2024) (cit.
on p. 18).

[52] The GNU Operating System and the Free Software Movement. url: https://www
.gnu.org/home.en.html (visited on 04/10/2024) (cit. on p. 17).

[53] The Institute. en-US. url: http://www.oeaw.ac.at/ricam/institute/about (visited
on 04/10/2024) (cit. on p. 19).

[54] The Internals of the Wolfram System—Wolfram Language Documentation. url:
https://reference.wolfram.com/language/tutorial/TheInternalsOfTheWolframSyste
m.html#28134 (visited on 04/09/2024) (cit. on p. 15).

[55] The Story Continues: Announcing Version 14 of Wolfram Language and Math-
ematica. en. Jan. 2024. url: https://writings.stephenwolfram.com/2024/01/the
- story- continues-announcing-version-14-of -wolfram- language-and-mathematica/
(visited on 04/05/2024) (cit. on p. 10).

[56] Theorema/Theorema/PackageTemplate.m at master · windsteiger/Theorema.
url: https://github.com/windsteiger/Theorema/blob/master/Theorema/Packa
geTemplate.m (visited on 04/05/2024) (cit. on p. 17).

[57] What We’ve Built Is a Computational Language (and That’s Very Impor-
tant!)—Stephen Wolfram Writings. en. May 2019. url: https://writings.stephe
nwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-ve
ry-important/ (visited on 02/24/2024) (cit. on pp. 9, 10).

[58] Why isn’t Wolfram more popular? Reddit Post. Oct. 2022. url: www.reddit . c
om/r/math/comments/ye2vj0/why_ isnt_wolfram_more_popular/ (visited on
04/02/2024) (cit. on p. 8).

[59] Why Wolfram Tech Isn’t Open Source—A Dozen Reasons—Wolfram Blog. en.
Apr. 2019. url: https://blog.wolfram.com/2019/04/02/why-wolfram-tech-isnt-op
en-source-a-dozen-reasons/ (visited on 04/02/2024) (cit. on p. 9).

https://unity.com/products/unity-engine
https://unity.com/products/unity-engine
https://reference.wolfram.com/language/guide/ScopingConstructs.html
https://reference.wolfram.com/language/guide/ScopingConstructs.html
https://risc.jku.at/software/
https://reference.wolfram.com/language/guide/Stylesheets.html
https://reference.wolfram.com/language/guide/Stylesheets.html
https://reference.wolfram.com/language/howto/SuppressTheOutputOfAComputation.html
https://reference.wolfram.com/language/howto/SuppressTheOutputOfAComputation.html
https://reference.wolfram.com/language/ref/TestObject.html
https://reference.wolfram.com/language/ref/TestObject.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/home.en.html
https://www.gnu.org/home.en.html
http://www.oeaw.ac.at/ricam/institute/about
https://reference.wolfram.com/language/tutorial/TheInternalsOfTheWolframSystem.html#28134
https://reference.wolfram.com/language/tutorial/TheInternalsOfTheWolframSystem.html#28134
https://writings.stephenwolfram.com/2024/01/the-story-continues-announcing-version-14-of-wolfram-language-and-mathematica/
https://writings.stephenwolfram.com/2024/01/the-story-continues-announcing-version-14-of-wolfram-language-and-mathematica/
https://github.com/windsteiger/Theorema/blob/master/Theorema/PackageTemplate.m
https://github.com/windsteiger/Theorema/blob/master/Theorema/PackageTemplate.m
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
www.reddit.com/r/math/comments/ye2vj0/why_isnt_wolfram_more_popular/
www.reddit.com/r/math/comments/ye2vj0/why_isnt_wolfram_more_popular/
https://blog.wolfram.com/2019/04/02/why-wolfram-tech-isnt-open-source-a-dozen-reasons/
https://blog.wolfram.com/2019/04/02/why-wolfram-tech-isnt-open-source-a-dozen-reasons/

References 92

[60] Wolfgang Windsteiger. ‘Theorema 2.0: A Brief Tutorial’. en. In: 2017 19th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). Timisoara: IEEE, Sept. 2017, pp. 36–38. doi: 10.1109/SYNASC.201
7.00016. (Visited on 04/05/2024) (cit. on p. 11).

[61] Wolfgang Windsteiger. ‘Theorema 2.0: A Graphical User Interface for a Mathe-
matical Assistant System’. Electronic Proceedings in Theoretical Computer Sci-
ence 118 (July 2013). arXiv:1307.1945 [cs], pp. 72–82. doi: 10.4204/EPTCS.118.5
. (Visited on 10/14/2023) (cit. on pp. 7, 12–15).

[62] Wolfram Research. Export: Output data to a specified file format—Wolfram Docu-
mentation. url: https://reference.wolfram.com/language/ref/Export.html (visited
on 10/14/2023) (cit. on p. 8).

[63] Wolfram Research, Inc. url: https://reference.wolfram.com/legacy/v3/MainBook
/2.5.1.html (visited on 04/03/2024) (cit. on pp. 1–3, 7–9).

[64] Wolfram Research, Inc. url: https://reference.wolfram.com/legacy/v3/MainBook
/2.4.10.html (visited on 04/04/2024) (cit. on pp. 7, 8).

[65] Wolfram Research, Inc. $Context—Wolfram Language Documentation. Aug. 2024.
url: https : / / reference . wolfram . com / language / ref / $Context . html (visited on
04/09/2024) (cit. on p. 33).

[66] Wolfram Research, Inc. About Wolfram|Alpha: Making the World’s Knowledge
Computable. en. Aug. 2024. url: https : / / www . wolframalpha . com (visited on
08/26/2024) (cit. on p. 8).

[67] Wolfram Research, Inc. Expressions—Wolfram Language Documentation. Aug.
2024. url: https://reference.wolfram.com/language/tutorial/Expressions.html#20
284 (visited on 08/26/2024) (cit. on p. 3).

[68] Wolfram Research, Inc. MakeBoxes—Wolfram Language Documentation. url:
https : / / reference . wolfram . com / language / ref / MakeBoxes . html (visited on
07/19/2024) (cit. on p. 28).

[69] Wolfram Research, Inc. Mathematica: A System for Doing Mathematics by Com-
puter, Second Edition. Aug. 2024. url: https://www.wolfram.com/books/profile.c
gi?id=3617 (visited on 08/26/2024) (cit. on p. 10).

[70] Wolfram Research, Inc. Message—Wolfram Language Documentation. Aug. 2024.
url: https : / / reference . wolfram . com / language / ref / Message . html (visited on
08/24/2024) (cit. on p. 33).

[71] Wolfram Research, Inc. Summary of New and Improved Features in 14.0—Wol-
fram Language Documentation. Aug. 2024. url: https://reference.wolfram.com/la
nguage/guide/SummaryOfNewFeaturesIn140.html (visited on 02/24/2024) (cit. on
p. 8).

[72] Wolfram Research, Inc. TestCreate—Wolfram Language Documentation. Sept.
2024. url: https ://reference.wolfram.com/language/ref /TestCreate .html (vis-
ited on 09/21/2024) (cit. on p. 48).

[73] Wolfram Research, Inc. TestEvaluate—Wolfram Language Documentation. Sept.
2024. url: https://reference.wolfram.com/language/ref/TestEvaluate.html (visited
on 09/21/2024) (cit. on p. 48).

https://doi.org/10.1109/SYNASC.2017.00016
https://doi.org/10.1109/SYNASC.2017.00016
https://doi.org/10.4204/EPTCS.118.5
https://doi.org/10.4204/EPTCS.118.5
https://reference.wolfram.com/language/ref/Export.html
https://reference.wolfram.com/legacy/v3/MainBook/2.5.1.html
https://reference.wolfram.com/legacy/v3/MainBook/2.5.1.html
https://reference.wolfram.com/legacy/v3/MainBook/2.4.10.html
https://reference.wolfram.com/legacy/v3/MainBook/2.4.10.html
https://reference.wolfram.com/language/ref/$Context.html
https://www.wolframalpha.com
https://reference.wolfram.com/language/tutorial/Expressions.html#20284
https://reference.wolfram.com/language/tutorial/Expressions.html#20284
https://reference.wolfram.com/language/ref/MakeBoxes.html
https://www.wolfram.com/books/profile.cgi?id=3617
https://www.wolfram.com/books/profile.cgi?id=3617
https://reference.wolfram.com/language/ref/Message.html
https://reference.wolfram.com/language/guide/SummaryOfNewFeaturesIn140.html
https://reference.wolfram.com/language/guide/SummaryOfNewFeaturesIn140.html
https://reference.wolfram.com/language/ref/TestCreate.html
https://reference.wolfram.com/language/ref/TestEvaluate.html

References 93

[74] Wolfram Research, Inc. TestReport—Wolfram Language Documentation. Sept.
2024. url: https ://reference.wolfram.com/language/ref /TestReport .html (vis-
ited on 09/21/2024) (cit. on p. 48).

[75] Wolfram Research, Inc. Textual Input and Output—Wolfram Language Documen-
tation. Aug. 2024. url: https://reference.wolfram.com/language/tutorial/TextualI
nputAndOutput.html#12413 (visited on 08/24/2024) (cit. on p. 34).

[76] Wolfram Research, Inc. Transformation Rules and Definitions—Wolfram Lan-
guage Documentation. Aug. 2024. url: https://reference.wolfram.com/languag
e/tutorial/TransformationRulesAndDefinitions.html#6972 (visited on 08/26/2024)
(cit. on p. 3).

[77] Wolfram Research, Inc. Using Testing Notebooks—Wolfram Language Documen-
tation. Sept. 2024. url: https://reference.wolfram.com/language/tutorial/UsingTe
stingNotebooks.html (visited on 09/21/2024) (cit. on p. 49).

[78] Wolfram Research, Inc. Using the Testing Framework—Wolfram Language Docu-
mentation. Sept. 2024. url: https://reference.wolfram.com/language/tutorial/Usi
ngTheTestingFramework.html (visited on 09/21/2024) (cit. on pp. 48–50).

[79] Wolfram Research, Inc. WolframKernel—Wolfram Language Documentation. July
2024. url: https://reference.wolfram.com/language/ref/program/WolframKernel
.html (visited on 07/10/2024) (cit. on p. 24).

[80] Wolfram Research, Inc. WolframScript—Wolfram Language Documentation. Sept.
2024. url: https://reference.wolfram.com/language/ref/program/wolframscript.ht
ml (visited on 09/21/2024) (cit. on p. 49).

[81] Wolfram Research, Inc. WSTP: Wolfram Symbolic Transfer Protocol. en. July
2024. url: https ://www.wolfram.com/wstp/ (visited on 07/10/2024) (cit. on
p. 23).

[82] Wolfram Research, Inc. Yet More New Ideas and New Functions: Launching Ver-
sion 14.1 of Wolfram Language & Mathematica. en. July 2024. url: https://wr
itings.stephenwolfram.com/2024/07/yet-more-new- ideas-and-new- functions- lau
nching-version-14-1-of -wolfram-language-mathematica/ (visited on 08/26/2024)
(cit. on p. 8).

[83] Wolfram|Alpha Tour. en. url: https : / / www . wolframalpha . com (visited on
04/02/2024) (cit. on p. 8).

[84] Wolfram|One: Cloud-Desktop Computation Platform. en. url: http://www.wolfr
am.com/wolfram-one/ (visited on 04/02/2024) (cit. on p. 8).

https://reference.wolfram.com/language/ref/TestReport.html
https://reference.wolfram.com/language/tutorial/TextualInputAndOutput.html#12413
https://reference.wolfram.com/language/tutorial/TextualInputAndOutput.html#12413
https://reference.wolfram.com/language/tutorial/TransformationRulesAndDefinitions.html#6972
https://reference.wolfram.com/language/tutorial/TransformationRulesAndDefinitions.html#6972
https://reference.wolfram.com/language/tutorial/UsingTestingNotebooks.html
https://reference.wolfram.com/language/tutorial/UsingTestingNotebooks.html
https://reference.wolfram.com/language/tutorial/UsingTheTestingFramework.html
https://reference.wolfram.com/language/tutorial/UsingTheTestingFramework.html
https://reference.wolfram.com/language/ref/program/WolframKernel.html
https://reference.wolfram.com/language/ref/program/WolframKernel.html
https://reference.wolfram.com/language/ref/program/wolframscript.html
https://reference.wolfram.com/language/ref/program/wolframscript.html
https://www.wolfram.com/wstp/
https://writings.stephenwolfram.com/2024/07/yet-more-new-ideas-and-new-functions-launching-version-14-1-of-wolfram-language-mathematica/
https://writings.stephenwolfram.com/2024/07/yet-more-new-ideas-and-new-functions-launching-version-14-1-of-wolfram-language-mathematica/
https://writings.stephenwolfram.com/2024/07/yet-more-new-ideas-and-new-functions-launching-version-14-1-of-wolfram-language-mathematica/
https://www.wolframalpha.com
http://www.wolfram.com/wolfram-one/
http://www.wolfram.com/wolfram-one/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

94

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Mathematica as Both a Tool and an Object of Study, at RISC: The Theorema Project
	Starting from Rewriting: Mathematica and Wolfram Language as a Programming Language
	Wolfram Language Expressions, Comparison to Object Oriented Programming
	Wolfram Language as a Document Representation Format

	Motivation
	Need: The LaTeX-Standard for Academic Publishing in Mathematical Disciplines
	Comparison to Existing Functionality in Mathematica

	Development Environment
	Tools Used
	Platform-(In)dependence

	Mathematica/Wolfram Language Today
	Mathematica vs Wolfram Language (vs Wolfram|Alpha)
	The Wolfram Tool Chain Today and Its Criticisms
	How Wolfram Research Views Mathematica/Wolfram Language: The Computational Language Idea
	The Connection to First Order Predicate Logic

	Theoretical Background
	Theorema
	Theorema vs Mathematica
	Theorema 2.0 - Theorema Commander, Current Project Structure
	The Logic of Theorema
	Theorema Environment and Surfacing the Theorema Language

	Large Systems with Wolfram Language
	Modularity with Packages
	Theorema as an Extensible Mathematica Package

	Paradigms: The Project-Perspective on the Multi-Paradigm Approach in Wolfram Language
	Functional vs Procedural Programming in Wolfram Language, and the High-Level Programming Paradigm
	Symbolic Expressions Lead to Rule-Based Programming and Pattern Matching Approaches
	Rule-Based Programming
	Rule-Based Programming vs Rewriting, via Pattern Matching

	Concept
	Conceptual Cornerstones for this Project
	WL-Native Approach for Direct Integration with Theorema
	Existing (Kernel) Functionality: Source Code Deep-Dive
	Package/MakeTeX-Specification
	For This Project: No Layout-Information in the LaTeX
	MakeBoxes: An Alternative Typesetting-Pipeline

	Double Recursive Descent Through Wolfram and Theorema Language Using Pattern Matching and Rule Based Programming
	Pattern Matching to Realize LaTeX-Transformation of Wolfram Language Notebook Code
	Pattern Matching to Realize LaTeX-Transformation of the Theorema Language Data Structure

	Extensibility in Both LaTeXand Wolfram Language
	A Note on Evaluation Criteria and Stability
	WL-Messages and -Tests: Software Design Goals
	Extensibility

	Implementation
	Overview of the Implementation
	Note on Modular Programming in Wolfram Language
	Overall Structure of the Package

	High Level Programming in Practice
	Client Functions
	File-handling and LaTeXDetails

	Implementation of (Double) Recursive Descent with Pattern Matching
	General Remarks on Pattern Matching, and Execution Order, in Wolfram Language
	Limited Approach of Specific Pattern Matching Rules
	Generalized Parsing Approach for Theorema Data

	Closing Words
	Messages, Failures, and Testing in WL
	Working with Messages in WL
	Testing in the Wolfram Language
	Testing Approach for this Project

	Analysis and Review
	Final Closing Remarks: Wolfram Language as a Software Engineering Tool and Integrating with Other Languages and Environments, Potential Future Work
	Using Wolfram Language for Software Engineering
	Potential Future Work

	Technical Documentation/Source Code
	Supplementary Materials (Submission Repository)
	PDF Files
	Program Files

	Sample Document FirstTour
	Exposé: A Tree Pattern Function in Mathematica
	References
	Literature

